Mathematical and computer modeling of automatic control in the presence of disturbances
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 1, pp. 109-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One of the most important tasks of the automatic motion control system in real operating conditions is to compensate for the influence of disturbances acting on the object, taking into account the peculiarities of its dynamics. This article presents a method for calculating the coefficients of automatic control, which provides a minimum of the size of the set of reactions to non-deterministic external influences, limited by the norm, and the necessary location of the roots of the characteristic polynomial of a system closed by such control. The specified algorithm is implemented in MATLAB and tested on the example of a specific marine vessel. Based on the simulation results, a conclusion is made about the acceptable quality of the generated algorithm.
Keywords: control, computer simulation
Mots-clés : perturbation.
@article{VSPUI_2024_20_1_a8,
     author = {M. N. Smirnov and M. A. Smirnova},
     title = {Mathematical and computer modeling of automatic control in the presence of disturbances},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {109--116},
     year = {2024},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_1_a8/}
}
TY  - JOUR
AU  - M. N. Smirnov
AU  - M. A. Smirnova
TI  - Mathematical and computer modeling of automatic control in the presence of disturbances
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2024
SP  - 109
EP  - 116
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_1_a8/
LA  - ru
ID  - VSPUI_2024_20_1_a8
ER  - 
%0 Journal Article
%A M. N. Smirnov
%A M. A. Smirnova
%T Mathematical and computer modeling of automatic control in the presence of disturbances
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2024
%P 109-116
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_1_a8/
%G ru
%F VSPUI_2024_20_1_a8
M. N. Smirnov; M. A. Smirnova. Mathematical and computer modeling of automatic control in the presence of disturbances. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 1, pp. 109-116. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_1_a8/

[1] Zubov V. I., Lections on control theory, Lan' Publ, St. Petersburg, 2009, 496 pp. (In Russian)

[2] Zubov V. I., Mathematical methods of research of automatic control systems, Mashinostroenie Publ, L., 1974, 336 pp. (In Russian)

[3] Miroshnik I. V., Automatic control theory. Nonlinear and optimal systems, Piter Publ, St. Petersburg, 2005, 271 pp. (In Russian)

[4] Olsson G., Piani D., Digital systems of automatization and control, Nevskij Dialekt Publ, St. Petersburg, 2001, 557 pp. (In Russian)

[5] Cherneckij V. I., Diduk G. A., Potapenko A. A., Mathematical methods and algorithms of automatic systems research, Jenergija Publ, L., 1970, 374 pp. (In Russian)

[6] Janushevskij R. T., The theory of linear optimal multivariable control systems, Nauka Publ, M., 1973, 464 pp. (In Russian)

[7] Bosgra O. H., Kwakernaak H., Meinsma G., Design methods for control systems. Notes for a course of the Dutch Institute of Systems and Control, Delft University of Technology, Delft, 2006, 325 pp.

[8] Doyle J., Francis B., Tannenbaum A., Feedback control theory, Macmillan Publ. Co, New York, 1992, 227 pp. | MR

[9] Zhabko A. P., Zhabko N. A., Jakovlev P. V., “Zubov's optimum damping method in the control problem of one gyroscope system”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 18:2 (2022), 278–284 (In Russian) | DOI | MR

[10] Veremei E. I., Korchanov V. M., “Multiobjective stabilization of a certain class of dynamic systems”, Automation and Remote Control, 1989, no. 49, 1210–1219 | MR

[11] Veremej E. I., Linear systems with feedback, Lan' Publ, St. Petersburg, 2013, 448 pp. (In Russian)

[12] Veremej E. I., Korchanov V. M., “Multipurpose stabilisation of one class of dynamic systems”, Automatics and Telemechanics, 1988, no. 9, 126–137 (In Russian) | MR

[13] Smirnov M. N., Smirnova M. A., Smirnova T. E., Smirnov N. V., “The problem of synthesis the control laws with uncertainties in external disturbances”, Lecture Notes in Engineering and Computer Science, 2227, 2017, 276–279 | MR

[14] Smirnov M. N., Smirnova M. A., Smirnova T. E., Smirnov N. V., “The issues of multipurpose control laws construction”, Lecture Notes in Engineering and Computer Science, 2227, 2017, 194–196

[15] Smirnova M. A., Smirnov M. N., “Multipurpose control laws in trajectory tracking problem”, International Journal of Applied Engineering Research, 11:22 (2016), 11104–11109

[16] Polyak B. T., Shherbakov P. S., Robust stability and control, Nauka Publ, M., 2002, 303 pp. (In Russian)