@article{VSPUI_2024_20_1_a5,
author = {Zh. T. Zhusubaliyev and U. A. Sopuev and D. A. Bushuev and A. S. Kucherov and A. Z. Abdirasulov},
title = {On bifurcations of chaotic attractors in a pulse width modulated control system},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {62--78},
year = {2024},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_1_a5/}
}
TY - JOUR AU - Zh. T. Zhusubaliyev AU - U. A. Sopuev AU - D. A. Bushuev AU - A. S. Kucherov AU - A. Z. Abdirasulov TI - On bifurcations of chaotic attractors in a pulse width modulated control system JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2024 SP - 62 EP - 78 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_1_a5/ LA - ru ID - VSPUI_2024_20_1_a5 ER -
%0 Journal Article %A Zh. T. Zhusubaliyev %A U. A. Sopuev %A D. A. Bushuev %A A. S. Kucherov %A A. Z. Abdirasulov %T On bifurcations of chaotic attractors in a pulse width modulated control system %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2024 %P 62-78 %V 20 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_1_a5/ %G ru %F VSPUI_2024_20_1_a5
Zh. T. Zhusubaliyev; U. A. Sopuev; D. A. Bushuev; A. S. Kucherov; A. Z. Abdirasulov. On bifurcations of chaotic attractors in a pulse width modulated control system. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 1, pp. 62-78. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_1_a5/
[1] Kipnis M. M., “Chaotic phenomenas in a determination a single width modulated control system”, Technical kibernetics, 1992, no. 1, 108–112 (In Russian) | Zbl
[2] Gelig A. Kh., Churilov A. N., Stability and oscillations of nonlinear pulse-modulated systems, Birkhäuser, Boston, 1998, xvi+362 pp. | MR | Zbl
[3] Yakubovich V. A., Leonov G. A., Gelig A. Kh., Stability of stationary sets in control systems with discontinuous nonlinearities, World Scientific, Singapore, 2004, 334 pp. | MR | Zbl
[4] Yanochkina O. O., Titov D. V., “Bifurcation analysis of a pulse-width control system”, Autom. Remote Control, 83:2 (2022), 204–213 | DOI | MR | Zbl
[5] Zhusubaliyev Zh. T., Mosekilde E., Bifurcations and chaos in piecewise-smooth dynamical systems, World Scientific, Singapore, 2003, 363 pp. | MR | Zbl
[6] Banerjee S., Verghese C. C. (eds.), Nonlinear phenomena in power electronis, IEEE Press, New York, 2001, 441 pp.
[7] Di Bernardo M., Budd C. J., Champneys A. R., Kowalczyk P., Piecewise-smooth dynamical systems: Theory and applications, Springer-Verlag, London, 2008, 483 pp. | MR | Zbl
[8] Avrutin V., Gardini L., Sushko I., Tramontana F., Continuous and discontinuous piecewise-smooth one-dimensional maps: Invariant sets and bifurcation structures, World Scientific, Singapore, 2019, 637 pp. | MR | Zbl
[9] Zhusubaliyev Zh. T., Mosekilde E., Maity S. M., Mohanan S., Banerjee S., “Border collision route to quasiperiodicity: Numerical investigation and experimental sonfirmation”, Chaos, 16 (2006), 023122 | DOI | MR | Zbl
[10] Zhusubaliyev Zh. T., Avrutin V., Sushko I., Gardini L., “Border collision bifurcation of a resonant closed invariant curve”, Chaos, 32 (2022), 043101 | DOI | MR
[11] Radi D., Gardini L., “A piecewise smooth model of evolutionary game for residential mobility and segregation”, Chaos, 28 (2018), 055912 | DOI | MR | Zbl
[12] Avrutin V., Zhusubaliyev Zh. T., “Nested closed invariant curves in piecewise smooth maps”, International Journal of Bifurcation and Chaos, 29 (2019), 1930017 | DOI | MR | Zbl
[13] Patra M., Banerjee S., “Hyperchaos in 3D piecewise smooth maps”, Chaos, Solitons and Fractals, 133 (2020), 109681 | DOI | MR | Zbl
[14] Sushko I., Commendatore P., Kubin I., “Codimension-two border collision bifurcation in a two-class growth model with optimal saving and switch in behavior”, Nonlinear Dynamics, 102:2 (2020), 1071–1095 | DOI
[15] Gallegati M., Gardini L., Sushko I., “Dynamics of a business cycle model with two types of governmental expenditures: The role of border collision bifurcations”, Decisions in Economics and Finance, 44:2 (2021), 613–639 | DOI | MR | Zbl
[16] Anufriev M., Gardini L., Radi D., “Chaos, border-collisions and stylized empirical facts in an asset pricing model with heterogeneous agents”, Nonlinear Dynamics, 102 (2020), 993–1017 | DOI
[17] Zhusubaliyev Zh. T., Avrutin V., Bastian F., “Transformations of closed invariant curves and closed-invariant-curve-like chaotic attractors in piecewise smooth systems”, International Journal of Bifurcation and Chaos, 31:3 (2021), 2130009 | DOI | MR | Zbl
[18] Simpson D. J. W., Avrutin V., Banerjee S., “Nordmark map and the problem of large-amplitude chaos in impact oscillators”, Physical Review E, 102:2 (2021), 022211 | DOI | MR
[19] Jeffrey M. R., Glendinning P., “Hidden dynamics for piecewise smooth maps”, Nonlinearity, 34:5 (2021), 3184–3198 | DOI | MR | Zbl
[20] Nusse H. E., Yorke J. A., “Border-collision bifurcations including “Period two to period three” for piecewise smooth systems”, Physica D, 57:1–2 (1992), 39–57 | DOI | MR | Zbl
[21] Feigin M. I., “Doubling of the oscillation period with $C$-bifurcations in piecewise continuous systems”, Journal of Appl. Math., 34:5–6 (1970), 822–830 | MR | Zbl
[22] Feigin M. I., “On the structure of $C$-bifurcation boundaries of piecewise continuous systems”, Journal of Appl. Math. Mech., 42:5 (1978), 820–829 | DOI | MR
[23] Di Bernardo M., Feigin M. I., Hogan S. J., Homer M. E., “Local analysis of $C$-bifurcations in $n$-dimensional piecewise-smooth dynamical systems”, Chaos, Solitons and Fractals, 19:11 (1999), 1881–1908 | MR
[24] Kuznetsov Yu. A., Elements of applied bifurcation theory, Springer-Verlag, New York, 2004, 633 pp. | MR | Zbl
[25] Grebogi C., Ott E., Yorke J. A., “Chaotic attractors in crisis”, Phys. Rev. Lett., 48 (1982), 1507–1510 | DOI | MR
[26] Maistrenko Yu. L., Maistrenko V. L., Chua L. O., “Cycles of chaotic intervals in a time-delayed Chua's circuit”, International Journal of Bifurcation and Chaos, 3 (1993), 1557–1572 | DOI | MR
[27] Mira C., Gardini L., Barugola A., Cathala J. C., Chaotic dynamics in two-dimensional noninvertible maps, World Scientific, Singapore, 1996, 632 pp. | MR | Zbl
[28] Devaney R. L., An introduction to chaotic dynamical systems, CRC Press, Taylor Francis Group, New York, 2022, 419 pp. | MR | Zbl
[29] Avrutin V., Sushko I., Gardini L., “Cyclicity of chaotic attractors in one-dimensional discontinuous maps”, Math. Comp. Sim., 95 (2013), 126–136 | DOI | MR
[30] Avrutin V., Eckstein E., Schanz M., “On detection of multi-band chaotic attractors”, Proceedings of Royal Society A, 463 (2007), 1339–1358 | DOI | MR | Zbl
[31] M. H. Rashid (ed.), Power electronics handbook, 4$^{\rm th}$ ed., Butterworth-Heinemann, Oxford, 2018, xi+1496 pp.
[32] F. Blaabjerg (ed.), Control of power electronic converters and systems, v. 3, Academic Press, London, 2021, xviii+700 pp.