The variational optimality condition in the problem of minimizing the finite state norm by a composite system of hyperbolic and ordinary differential equations
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 4, pp. 540-548 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An optimal control problem for a system of linear first-order hyperbolic equations is studied. The boundary conditions are determined from controlled systems of ordinary differential equations. A nonclassical exact formulae for the increment of a linear performance index (a finite state norm) is suggested. Based on this result, a variational optimality condition is proved. The original optimal control problems for a hyperbolic system is reduced to the problem for systems of ordinary differential equations.
Keywords: hyperbolic system, controlled boundary conditions, norm minimization, variational optimality condition, problem reduction.
@article{VSPUI_2023_19_4_a9,
     author = {A. V. Arguchintsev},
     title = {The variational optimality condition in the problem of minimizing the finite state norm by a composite system of hyperbolic and ordinary differential equations},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {540--548},
     year = {2023},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a9/}
}
TY  - JOUR
AU  - A. V. Arguchintsev
TI  - The variational optimality condition in the problem of minimizing the finite state norm by a composite system of hyperbolic and ordinary differential equations
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2023
SP  - 540
EP  - 548
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a9/
LA  - ru
ID  - VSPUI_2023_19_4_a9
ER  - 
%0 Journal Article
%A A. V. Arguchintsev
%T The variational optimality condition in the problem of minimizing the finite state norm by a composite system of hyperbolic and ordinary differential equations
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2023
%P 540-548
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a9/
%G ru
%F VSPUI_2023_19_4_a9
A. V. Arguchintsev. The variational optimality condition in the problem of minimizing the finite state norm by a composite system of hyperbolic and ordinary differential equations. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 4, pp. 540-548. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a9/

[1] Aponin Yu. M., Aponina E. A., Kuznetsov Yu. A., “Mathematical modeling of space-time dynamics of the age structure of the plants population”, Mathematical Biology and Bioinformatics, 1:1 (2006), 1–16 (In Russian)

[2] Vazquez J. L., Zuazua E., “Large time behavior for a simplified 1D model of fluid-solid interaction”, Comm. Partial Differential Equations, 28:9–10 (2003), 1705–1738 | DOI | MR | Zbl

[3] Faugeras B., Blum J., Heumann H., Boulbe C., “Optimal control of a coupled partial and ordinary differential equations system for the assimilation of polarimetry Stokes vector measurements in tokamak free-boundary equilibrium reconstruction with application to ITER”, Computer Physics Communications, 217 (2017), 43–57 | DOI | MR | Zbl

[4] Weihua Ruan, “A coupled system of ODEs and quasilinear hyperbolic PDEs arising in a multiscale blood flow model”, Journal of Mathematical Analysis and Applications, 343:2 (2008), 778–796 | DOI | MR

[5] Arguchintsev A. V., “Solution of the problem of the optimal control of initial-boundary conditions of a hyperbolic system based on exact increment formulas”, Russian Mathematics, 46:12 (2002), 21–27 | MR | Zbl

[6] Gabasov R., Kirillova F. M., Special optimal controls, Nauka Publ, M., 1973, 256 pp. (In Russian) | MR

[7] Rozhdestvenskiyi B. L., Yanenko N. N., Systems of quasilinear equations and their applications to gas dynamics, Nauka Publ, M., 1978, 592 pp. (In Russian) | MR

[8] Potapov M. M., “A generalized solution of a mixed problem for a first-order semilinear hyperbolic system”, Differential Equations, 19:10 (1983), 1826–1828 | MR | Zbl

[9] Srochko V. A., Aksenyushkina E. V., “Parameterization of some linear systems control problems”, The Bulletin of Irkutsk State University. Series Mathematics, 30 (2019), 83–98 (In Russian) | DOI | MR | Zbl

[10] Srochko V. A., Aksenyushkina E. V., Antonik V. G., “Resolution of a linear-quadratic optimal control problem based on finite-dimensional models”, The Bulletin of Irkutsk State University. Series Mathematics, 37 (2021), 3–16 (In Russian) | DOI | MR | Zbl

[11] Popkov A. S., “Optimal program control in the class of quadratic splines for linear systems”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:4 (2020), 462–470 | DOI | MR

[12] Drivotin O. I., “On numerical solution of the optimal control problem based on a method using the second variation of a trajectory”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:2 (2019), 283–295 (In Russian) | DOI | MR