@article{VSPUI_2023_19_4_a9,
author = {A. V. Arguchintsev},
title = {The variational optimality condition in the problem of minimizing the finite state norm by a composite system of hyperbolic and ordinary differential equations},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {540--548},
year = {2023},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a9/}
}
TY - JOUR AU - A. V. Arguchintsev TI - The variational optimality condition in the problem of minimizing the finite state norm by a composite system of hyperbolic and ordinary differential equations JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2023 SP - 540 EP - 548 VL - 19 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a9/ LA - ru ID - VSPUI_2023_19_4_a9 ER -
%0 Journal Article %A A. V. Arguchintsev %T The variational optimality condition in the problem of minimizing the finite state norm by a composite system of hyperbolic and ordinary differential equations %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2023 %P 540-548 %V 19 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a9/ %G ru %F VSPUI_2023_19_4_a9
A. V. Arguchintsev. The variational optimality condition in the problem of minimizing the finite state norm by a composite system of hyperbolic and ordinary differential equations. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 4, pp. 540-548. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a9/
[1] Aponin Yu. M., Aponina E. A., Kuznetsov Yu. A., “Mathematical modeling of space-time dynamics of the age structure of the plants population”, Mathematical Biology and Bioinformatics, 1:1 (2006), 1–16 (In Russian)
[2] Vazquez J. L., Zuazua E., “Large time behavior for a simplified 1D model of fluid-solid interaction”, Comm. Partial Differential Equations, 28:9–10 (2003), 1705–1738 | DOI | MR | Zbl
[3] Faugeras B., Blum J., Heumann H., Boulbe C., “Optimal control of a coupled partial and ordinary differential equations system for the assimilation of polarimetry Stokes vector measurements in tokamak free-boundary equilibrium reconstruction with application to ITER”, Computer Physics Communications, 217 (2017), 43–57 | DOI | MR | Zbl
[4] Weihua Ruan, “A coupled system of ODEs and quasilinear hyperbolic PDEs arising in a multiscale blood flow model”, Journal of Mathematical Analysis and Applications, 343:2 (2008), 778–796 | DOI | MR
[5] Arguchintsev A. V., “Solution of the problem of the optimal control of initial-boundary conditions of a hyperbolic system based on exact increment formulas”, Russian Mathematics, 46:12 (2002), 21–27 | MR | Zbl
[6] Gabasov R., Kirillova F. M., Special optimal controls, Nauka Publ, M., 1973, 256 pp. (In Russian) | MR
[7] Rozhdestvenskiyi B. L., Yanenko N. N., Systems of quasilinear equations and their applications to gas dynamics, Nauka Publ, M., 1978, 592 pp. (In Russian) | MR
[8] Potapov M. M., “A generalized solution of a mixed problem for a first-order semilinear hyperbolic system”, Differential Equations, 19:10 (1983), 1826–1828 | MR | Zbl
[9] Srochko V. A., Aksenyushkina E. V., “Parameterization of some linear systems control problems”, The Bulletin of Irkutsk State University. Series Mathematics, 30 (2019), 83–98 (In Russian) | DOI | MR | Zbl
[10] Srochko V. A., Aksenyushkina E. V., Antonik V. G., “Resolution of a linear-quadratic optimal control problem based on finite-dimensional models”, The Bulletin of Irkutsk State University. Series Mathematics, 37 (2021), 3–16 (In Russian) | DOI | MR | Zbl
[11] Popkov A. S., “Optimal program control in the class of quadratic splines for linear systems”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:4 (2020), 462–470 | DOI | MR
[12] Drivotin O. I., “On numerical solution of the optimal control problem based on a method using the second variation of a trajectory”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:2 (2019), 283–295 (In Russian) | DOI | MR