Deep neural network based resource allocation in D2D wireless networks
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 4, pp. 529-539 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The increased complexity of future 5G wireless communication networks presents a fundamental issue for optimal resource allocation. This continuous, constrained optimal control problem must be solved in real-time since the power allocation should be consistent with the instantly evolving channel state. This paper emphasizes the application of deep learning to develop solutions for radio resource allocation problems in multiple-input multiple-output systems. We introduce a supervised deep neural network model combined with particle swarm optimization to address the issue using heuristic-generated data. We train the model and evaluate its ability to anticipate resource allocation solutions accurately. The simulation result indicates that the trained DNN-based model can deliver the near-optimal solution.
Keywords: multiple-input multiple-output systems, deep neural networks, heuristics, particle swarm optimization.
@article{VSPUI_2023_19_4_a8,
     author = {Q. Sun and Y. Zhang and H. Wu and O. L. Petrosian},
     title = {Deep neural network based resource allocation in {D2D} wireless networks},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {529--539},
     year = {2023},
     volume = {19},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a8/}
}
TY  - JOUR
AU  - Q. Sun
AU  - Y. Zhang
AU  - H. Wu
AU  - O. L. Petrosian
TI  - Deep neural network based resource allocation in D2D wireless networks
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2023
SP  - 529
EP  - 539
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a8/
LA  - en
ID  - VSPUI_2023_19_4_a8
ER  - 
%0 Journal Article
%A Q. Sun
%A Y. Zhang
%A H. Wu
%A O. L. Petrosian
%T Deep neural network based resource allocation in D2D wireless networks
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2023
%P 529-539
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a8/
%G en
%F VSPUI_2023_19_4_a8
Q. Sun; Y. Zhang; H. Wu; O. L. Petrosian. Deep neural network based resource allocation in D2D wireless networks. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 4, pp. 529-539. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a8/

[1] Lu L., Li G. Y., Swindlehurst A. L., Ashikhmin A., Zhang R., “An overview of massive MIMO: Benefits and challenges”, Journal of Applied Statistics, 8:5 (2014), 742–758

[2] Akbar N., Bjornson E., Larsson E. G., Yang N., “Downlink power control in massive MIMO networks with distributed antenna arrays”, IEEE International Conference on Communications (ICC), 2018, 1–6

[3] Zhang X., Zhao H., Xiong J., Liu X., Zhou L., Wei J., “Scalable power control/beamforming in heterogeneous wireless networks with graph neural networks”, IEEE Global Communications Conference (GLOBECOM), 2021, 1–6

[4] Ngo H. Q., Larsson E. G., Marzetta T. L., “Energy and spectral efficiency of very large multiuser MIMO systems”, IEEE Transactions on Communications, 61:4 (2013), 1436–1449 | DOI

[5] Shi Q., Razaviyayn M., Luo Z. Q., He C., “An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel”, IEEE Transactions on Signal Processing, 59:9 (2011), 4331–4340 | DOI | MR | Zbl

[6] Shen K., Yu W., “Fractional programming for communication systems. Pt I. Power control and beamforming”, IEEE Transactions on Signal Processing, 66:10 (2011), 2616–2630 | DOI | MR

[7] Zhao Y., Niemegeers I. G., De Groot S. H., “Power allocation in cell-free massive MIMO: A deep learning method”, IEEE Access, 8 (2020), 87185–87200 | DOI

[8] Reddy Y. B., “Genetic algorithm approach for adaptive subcarrier, bit, and power allocation”, IEEE International Conference on Networking, Sensing and Control, 2007, 14–19

[9] Mukherjee A., Goswami P., Yan Z., Yang L., Rodrigues J. J., “ADAI and adaptive PSO-based resource allocation for wireless sensor networks”, IEEE Access, 7 (2019), 131163–131171 | DOI

[10] Khanolkar S., Sharma N., Anpalagan A., “Energy-efficient resource allocation in underlay D2D communication using ABC algorithm”, Wireless Personal Communications, 125:2 (2022), 1443–1468 | DOI

[11] Bezmaslov M., Belyaev D., Vasilev V., Dolgintseva E., Yamshchikova L., Petrosian O., “Optimizing DSO requests management flexibility for home appliances using CBCC–RDG3”, Computation, 10:10 (2022), 188 | DOI

[12] Sun H., Chen X., Shi Q., Hong M., Fu X., Sidiropoulos N. D., “Learning to optimize: Training deep neural networks for interference management”, IEEE Transactions on Signal Processing, 66:20 (2018), 5438–5453 | DOI | MR | Zbl

[13] Lee W., Kim M., Cho D. H., “Deep power control: Transmit power control scheme based on convolutional neural network”, IEEE Communications Letters, 22:6 (2018), 1276–1279 | DOI

[14] Eisen M., Zhang C., Chamon L. F., Lee D. D., Ribeiro A., “Learning optimal resource allocations in wireless systems”, IEEE Transactions on Signal Processing, 67:10 (2019), 2775–2790 | DOI | MR | Zbl

[15] Kennedy J., Eberhart R., “Particle swarm optimization”, Proceedings of ICNN'95 International Conference on neural networks, Robotics and Autonomous Systems, 22, 1995, 1942–1948

[16] Hamdi R., Driouch E., Ajib W., “Resource allocation in downlink large-scale MIMO systems”, IEEE Access, 4 (2016), 8303–8316 | DOI

[17] Pellaco L., Bengtsson M., Jalden J., Deep unfolding of the weighted MMSE beamforming algorithm, 2020, arXiv: 2006.08448

[18] Yang Z., Xia J. Y., Luo J., Zhang S., Gunduz D., “A learning-aided flexible gradient descent approach to MISO beamforming”, IEEE Wireless Communications Letters, 11:9 (2022), 1895–1899 | DOI

[19] Sun Q., Wu H., Petrosian O., “Optimal power allocation based on metaheuristic algorithms in wireless network”, Mathematics, 10:18 (2022), 33–36 | DOI | MR

[20] Wang T. Y., Zhou H., Kannan R., Swami A., Prasanna V., “Throughput optimization in heterogeneous MIMO networks: A GNN-based approach”, Proceedings of the 1$^{st}$ International Workshop on Graph Neural Networking, 2022, 42–47 | DOI

[21] Alsharoa A., Ghazzai H., Alouini M. S., “Energy efficient design for MIMO two-way AF multiple relay networks”, IEEE Wireless Communications and Networking Conference (WCNC), 2014, 1007–1011

[22] Koc A., Wang M., Le-Ngoc T., “Deep learning based multi-user power allocation and hybrid precoding in massive MIMO systems”, IEEE International Conference on Communications, 2022, 5487–5492

[23] Kim D., Jung H., Lee I. H., “Deep learning-based power control scheme with partial channel information in overlay device-to-device communication systems”, IEEE Access, 9 (2021), 122125–122137 | DOI

[24] Koc A., Le-Ngoc T., “Swarm intelligence based power allocation in hybrid millimeter-wave massive MIMO systems”, IEEE Wireless Communications and Networking Conference (WCNC), 2021, 1–7

[25] Bezmaslov M., Belyaev D., Vasilev V., Dolgintseva E., Yamshchikova L., Petrosian O., “Optimizing DSO requests management flexibility for home Appliances Using CBCC-RDG3”, Computation, 10:10 (2022), 188–201 | DOI

[26] Markelova A. Y., Allahverdyan A. L., Martemyanov A. A., Sokolova I. S., Petrosian O. L., Svirkin M. V., “Applied routing problem for a fleet of delivery drones using a modified parallel genetic algorithm”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18:1 (2022), 135–148 | DOI | MR

[27] Markelova A., Petrosian O., Laistseva M., “Microgrid management with energy storage system and renewable energy generation”, Control Processes and Stability, 6 (2021), 430–434