@article{VSPUI_2023_19_4_a8,
author = {Q. Sun and Y. Zhang and H. Wu and O. L. Petrosian},
title = {Deep neural network based resource allocation in {D2D} wireless networks},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {529--539},
year = {2023},
volume = {19},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a8/}
}
TY - JOUR AU - Q. Sun AU - Y. Zhang AU - H. Wu AU - O. L. Petrosian TI - Deep neural network based resource allocation in D2D wireless networks JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2023 SP - 529 EP - 539 VL - 19 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a8/ LA - en ID - VSPUI_2023_19_4_a8 ER -
%0 Journal Article %A Q. Sun %A Y. Zhang %A H. Wu %A O. L. Petrosian %T Deep neural network based resource allocation in D2D wireless networks %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2023 %P 529-539 %V 19 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a8/ %G en %F VSPUI_2023_19_4_a8
Q. Sun; Y. Zhang; H. Wu; O. L. Petrosian. Deep neural network based resource allocation in D2D wireless networks. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 4, pp. 529-539. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a8/
[1] Lu L., Li G. Y., Swindlehurst A. L., Ashikhmin A., Zhang R., “An overview of massive MIMO: Benefits and challenges”, Journal of Applied Statistics, 8:5 (2014), 742–758
[2] Akbar N., Bjornson E., Larsson E. G., Yang N., “Downlink power control in massive MIMO networks with distributed antenna arrays”, IEEE International Conference on Communications (ICC), 2018, 1–6
[3] Zhang X., Zhao H., Xiong J., Liu X., Zhou L., Wei J., “Scalable power control/beamforming in heterogeneous wireless networks with graph neural networks”, IEEE Global Communications Conference (GLOBECOM), 2021, 1–6
[4] Ngo H. Q., Larsson E. G., Marzetta T. L., “Energy and spectral efficiency of very large multiuser MIMO systems”, IEEE Transactions on Communications, 61:4 (2013), 1436–1449 | DOI
[5] Shi Q., Razaviyayn M., Luo Z. Q., He C., “An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel”, IEEE Transactions on Signal Processing, 59:9 (2011), 4331–4340 | DOI | MR | Zbl
[6] Shen K., Yu W., “Fractional programming for communication systems. Pt I. Power control and beamforming”, IEEE Transactions on Signal Processing, 66:10 (2011), 2616–2630 | DOI | MR
[7] Zhao Y., Niemegeers I. G., De Groot S. H., “Power allocation in cell-free massive MIMO: A deep learning method”, IEEE Access, 8 (2020), 87185–87200 | DOI
[8] Reddy Y. B., “Genetic algorithm approach for adaptive subcarrier, bit, and power allocation”, IEEE International Conference on Networking, Sensing and Control, 2007, 14–19
[9] Mukherjee A., Goswami P., Yan Z., Yang L., Rodrigues J. J., “ADAI and adaptive PSO-based resource allocation for wireless sensor networks”, IEEE Access, 7 (2019), 131163–131171 | DOI
[10] Khanolkar S., Sharma N., Anpalagan A., “Energy-efficient resource allocation in underlay D2D communication using ABC algorithm”, Wireless Personal Communications, 125:2 (2022), 1443–1468 | DOI
[11] Bezmaslov M., Belyaev D., Vasilev V., Dolgintseva E., Yamshchikova L., Petrosian O., “Optimizing DSO requests management flexibility for home appliances using CBCC–RDG3”, Computation, 10:10 (2022), 188 | DOI
[12] Sun H., Chen X., Shi Q., Hong M., Fu X., Sidiropoulos N. D., “Learning to optimize: Training deep neural networks for interference management”, IEEE Transactions on Signal Processing, 66:20 (2018), 5438–5453 | DOI | MR | Zbl
[13] Lee W., Kim M., Cho D. H., “Deep power control: Transmit power control scheme based on convolutional neural network”, IEEE Communications Letters, 22:6 (2018), 1276–1279 | DOI
[14] Eisen M., Zhang C., Chamon L. F., Lee D. D., Ribeiro A., “Learning optimal resource allocations in wireless systems”, IEEE Transactions on Signal Processing, 67:10 (2019), 2775–2790 | DOI | MR | Zbl
[15] Kennedy J., Eberhart R., “Particle swarm optimization”, Proceedings of ICNN'95 International Conference on neural networks, Robotics and Autonomous Systems, 22, 1995, 1942–1948
[16] Hamdi R., Driouch E., Ajib W., “Resource allocation in downlink large-scale MIMO systems”, IEEE Access, 4 (2016), 8303–8316 | DOI
[17] Pellaco L., Bengtsson M., Jalden J., Deep unfolding of the weighted MMSE beamforming algorithm, 2020, arXiv: 2006.08448
[18] Yang Z., Xia J. Y., Luo J., Zhang S., Gunduz D., “A learning-aided flexible gradient descent approach to MISO beamforming”, IEEE Wireless Communications Letters, 11:9 (2022), 1895–1899 | DOI
[19] Sun Q., Wu H., Petrosian O., “Optimal power allocation based on metaheuristic algorithms in wireless network”, Mathematics, 10:18 (2022), 33–36 | DOI | MR
[20] Wang T. Y., Zhou H., Kannan R., Swami A., Prasanna V., “Throughput optimization in heterogeneous MIMO networks: A GNN-based approach”, Proceedings of the 1$^{st}$ International Workshop on Graph Neural Networking, 2022, 42–47 | DOI
[21] Alsharoa A., Ghazzai H., Alouini M. S., “Energy efficient design for MIMO two-way AF multiple relay networks”, IEEE Wireless Communications and Networking Conference (WCNC), 2014, 1007–1011
[22] Koc A., Wang M., Le-Ngoc T., “Deep learning based multi-user power allocation and hybrid precoding in massive MIMO systems”, IEEE International Conference on Communications, 2022, 5487–5492
[23] Kim D., Jung H., Lee I. H., “Deep learning-based power control scheme with partial channel information in overlay device-to-device communication systems”, IEEE Access, 9 (2021), 122125–122137 | DOI
[24] Koc A., Le-Ngoc T., “Swarm intelligence based power allocation in hybrid millimeter-wave massive MIMO systems”, IEEE Wireless Communications and Networking Conference (WCNC), 2021, 1–7
[25] Bezmaslov M., Belyaev D., Vasilev V., Dolgintseva E., Yamshchikova L., Petrosian O., “Optimizing DSO requests management flexibility for home Appliances Using CBCC-RDG3”, Computation, 10:10 (2022), 188–201 | DOI
[26] Markelova A. Y., Allahverdyan A. L., Martemyanov A. A., Sokolova I. S., Petrosian O. L., Svirkin M. V., “Applied routing problem for a fleet of delivery drones using a modified parallel genetic algorithm”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18:1 (2022), 135–148 | DOI | MR
[27] Markelova A., Petrosian O., Laistseva M., “Microgrid management with energy storage system and renewable energy generation”, Control Processes and Stability, 6 (2021), 430–434