Generating functions of the Cauchy operator of a hamiltonian system
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 4, pp. 522-528 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is related to the mathematical apparatus for describing the phase trajectories of a hamiltonian system. An approach related to the construction of generating functions for the Cauchy operator is proposed. It is shown that one-parameter families of generating functions satisfy the Hamilton — Jacobi equation or its modifications. Using the example of small oscillations of a mathematical pendulum, it is shown that the description of the Cauchy operator for sufficiently long periods of time requires the use of generating functions of various types. With the help of generating functions, a variational principle similar to the principle of least action is formulated. The efficiency of using generating functions in the development of conservative methods of numerical integration is also noted.
Keywords: hamilton equations, generating function, Cauchy operator, variational principle.
@article{VSPUI_2023_19_4_a7,
     author = {A. S. Shmyrov and V. A. Shmyrov and D. V. Shymanchuk},
     title = {Generating functions of the {Cauchy} operator of a hamiltonian system},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {522--528},
     year = {2023},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a7/}
}
TY  - JOUR
AU  - A. S. Shmyrov
AU  - V. A. Shmyrov
AU  - D. V. Shymanchuk
TI  - Generating functions of the Cauchy operator of a hamiltonian system
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2023
SP  - 522
EP  - 528
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a7/
LA  - ru
ID  - VSPUI_2023_19_4_a7
ER  - 
%0 Journal Article
%A A. S. Shmyrov
%A V. A. Shmyrov
%A D. V. Shymanchuk
%T Generating functions of the Cauchy operator of a hamiltonian system
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2023
%P 522-528
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a7/
%G ru
%F VSPUI_2023_19_4_a7
A. S. Shmyrov; V. A. Shmyrov; D. V. Shymanchuk. Generating functions of the Cauchy operator of a hamiltonian system. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 4, pp. 522-528. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a7/

[1] Arnold V. I., Mathematical methods of classical mechanics, Nauka Publ, M., 1989, 472 pp. (In Russian) | MR

[2] Shmyrov A. S., Stability in hamiltonian systems, St. Petersburg State University Press, St. Petersburg, 1995, 127 pp. (In Russian) | MR

[3] Markeev A. P., Theoretical mechanics, Nauka Publ, M., 1990, 416 pp. (In Russian)

[4] Yoshida H., “Construction of higher order symplectic integrators”, Physics Letters A, 150:5–7 (1990), 262–268 | DOI | MR

[5] Shmyrov A., Shmyrov V., Shymanchuk D., “The research of motion in a neighborhood of collinear libration point by conservative methods”, $9^{\text{th}}$ International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences. AMiTaNS 2017, AIP Conference Proceedings, 1895, 2017, 060003 | DOI | MR

[6] Malyavkin G. P., Shmyrov A. S., Shmyrov V. A., “On the numerical method for a controlled hamiltonian system”, Vestnik of Saint Petersburg State University of Technology and Design. Natural and Technical Science, 2016, no. 2, 34–37 (In Russian) | MR