@article{VSPUI_2023_19_4_a7,
author = {A. S. Shmyrov and V. A. Shmyrov and D. V. Shymanchuk},
title = {Generating functions of the {Cauchy} operator of a hamiltonian system},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {522--528},
year = {2023},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a7/}
}
TY - JOUR AU - A. S. Shmyrov AU - V. A. Shmyrov AU - D. V. Shymanchuk TI - Generating functions of the Cauchy operator of a hamiltonian system JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2023 SP - 522 EP - 528 VL - 19 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a7/ LA - ru ID - VSPUI_2023_19_4_a7 ER -
%0 Journal Article %A A. S. Shmyrov %A V. A. Shmyrov %A D. V. Shymanchuk %T Generating functions of the Cauchy operator of a hamiltonian system %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2023 %P 522-528 %V 19 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a7/ %G ru %F VSPUI_2023_19_4_a7
A. S. Shmyrov; V. A. Shmyrov; D. V. Shymanchuk. Generating functions of the Cauchy operator of a hamiltonian system. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 4, pp. 522-528. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a7/
[1] Arnold V. I., Mathematical methods of classical mechanics, Nauka Publ, M., 1989, 472 pp. (In Russian) | MR
[2] Shmyrov A. S., Stability in hamiltonian systems, St. Petersburg State University Press, St. Petersburg, 1995, 127 pp. (In Russian) | MR
[3] Markeev A. P., Theoretical mechanics, Nauka Publ, M., 1990, 416 pp. (In Russian)
[4] Yoshida H., “Construction of higher order symplectic integrators”, Physics Letters A, 150:5–7 (1990), 262–268 | DOI | MR
[5] Shmyrov A., Shmyrov V., Shymanchuk D., “The research of motion in a neighborhood of collinear libration point by conservative methods”, $9^{\text{th}}$ International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences. AMiTaNS 2017, AIP Conference Proceedings, 1895, 2017, 060003 | DOI | MR
[6] Malyavkin G. P., Shmyrov A. S., Shmyrov V. A., “On the numerical method for a controlled hamiltonian system”, Vestnik of Saint Petersburg State University of Technology and Design. Natural and Technical Science, 2016, no. 2, 34–37 (In Russian) | MR