Cooperative game theory methods for determining text complexity
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 4, pp. 509-521 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a method for estimating the complexity of texts based on the methods of cooperative game theory. The players in this game are the lengths of words in the text. The game itself is represented as a voting game in which the value of a player is determined by the number of coalitions in which the player is key. The ranks of the players are formed by computing the Shepley — Schubik value or the Banzaf index in a voting game with a given voting threshold. Thus, a vector of Shepley — Schubik or Banzaf values is assigned to each text. After that, the vector space is used to rank the texts in terms of complexity based on the expert evaluations obtained in this domain.
Keywords: text processing, voting game, Shepley — Schubik value, Banzaf power index, klasterization.
@article{VSPUI_2023_19_4_a6,
     author = {A. V. Khitryy and V. V. Mazalov and N. A. Bure and P. V. Drobnaya},
     title = {Cooperative game theory methods for determining text complexity},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {509--521},
     year = {2023},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a6/}
}
TY  - JOUR
AU  - A. V. Khitryy
AU  - V. V. Mazalov
AU  - N. A. Bure
AU  - P. V. Drobnaya
TI  - Cooperative game theory methods for determining text complexity
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2023
SP  - 509
EP  - 521
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a6/
LA  - ru
ID  - VSPUI_2023_19_4_a6
ER  - 
%0 Journal Article
%A A. V. Khitryy
%A V. V. Mazalov
%A N. A. Bure
%A P. V. Drobnaya
%T Cooperative game theory methods for determining text complexity
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2023
%P 509-521
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a6/
%G ru
%F VSPUI_2023_19_4_a6
A. V. Khitryy; V. V. Mazalov; N. A. Bure; P. V. Drobnaya. Cooperative game theory methods for determining text complexity. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 4, pp. 509-521. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a6/

[1] N. P. Andryushina, T. E. Vladimirova, L. P. Klobukova (Compilers), State educational standard for Russian as a foreign language. First level. Second level. Professional modules, Zlatoust Publ., St. Petersburg, 2000, 56 pp. (In Russian)

[2] Z. I. Esina, A. S. Ivanova, N. I. Soboleva (Compilers), Educational program on Russian as a foreign language. Pre-university education, Patrice Lumumba Peoples' Friendship University of Russian Press, M., 2001, 137 pp. (In Russian)

[3] Majer R. V., Didactic complexity of educational texts and its assessment, Glazovskiy State Pedagogical University Press, Glazov, 2020, 149 pp. (In Russian)

[4] Gunning R., The technique of clear writing, McGraw-Hill, New York, 1952, 289 pp.

[5] Flesch R., “A new readability yardstick”, Journal of Applied Psychology, 1948, no. 3, 221–233 | DOI

[6] Oborneva I. V., “A mathematical model for evaluating instructional texts”, Vestnik of Moscow State Pedagogical University. Series Information and Informatization of education, 2005, no. 1(4), 141–147 (In Russian)

[7] Coleman M., Liau T. L., “A computer readability formula designed for machine scoring”, Journal of Applied Psychology, 60 (1975), 283–284 | DOI

[8] Texts for teaching Russian as a foreign language (In Russian) (accessed: August 14, 2023)

[9] Mazalov V. V., Mathematical game theory and applications, Textbook, 2$^{\rm nd}$ ed., Lan' Publ, St. Petersburg, 2016, 448 pp. (In Russian)

[10] Molinero X., Laamiri A., Riquelme F., “Readability and power indices”, The Fifteenth International Conference on Game Theory and Management GTM 2021 (St. Petersburg, 2021), 7 pp.

[11] Mazalov V. V., Khitraya V. A., Khitryj A. V., “Methods of cooperative game theory in the task of text ranking”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18:1 (2022), 63–78 (In Russian) | DOI | MR

[12] Kondratev A. A., Mazalov V. V., “Tournament solutions based on cooperative game theory”, International Journal of Game Theory, 49 (2020), 119–145 | DOI | MR | Zbl

[13] Aleskerov F. T., Habina E. L., Shvarc D. A., Binary relations, graphs and collective solutions. Examples and problems, Textbook for universities, Yurite Publ, M., 2023, 458 pp. (In Russian)

[14] Bogomolnaia A., Jackson M. O., “The stability of hedonic coalition structures”, Games Econ. Behav., 38:2 (2002), 201–230 | DOI | MR | Zbl