Automatically obtaining by methods of flow cytometry and cluster analysis simplified leukocyte formula
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 4, pp. 469-483
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The leukocyte formula is the percentage of different groups of white blood cells. According to morphological features, three subpopulations can be distinguished among leukocytes: lymphocytes, monocytes and granulocytes. Granulocytes are divided into neutrophilic, eosinophilic, and basophilic cells. Automatic typologization of white blood cells is an unsolved problem, since at present, during cytometric research, the counting of the number of cells in various subpopulations of leukocytes is actually done manually, which in turn causes the subjectivity of the experiment and large values of errors in calculations. To solve this problem, attempts have been made repeatedly to use cluster analysis methods. In computational experiments, it was shown that the use of standard algorithms, such as the agglomerative methods, EM algorithm, DBSCAN, etc., does not allow to obtain the desired results. In recent years, a large number of research papers have been published describing specialized clustering algorithms for detecting and determining populations of white blood cells, some of them have found practical application, but the problems associated with the presence of a large amount of noise and different data density distribution during leukocyte clustering by flow cytometry methods remain relevant. The article considers an approach to constructing a strategy for automatic allocation of the main leukocyte subpopulations using a modified agglomerative centroid clustering method and discusses the results of computational experiments. The results of calculating the proportion of lymphocytes are compared “manually” and automatically using a modified centroid algorithm.
Keywords: leukocyte formula, flow cytometry, cluster analysis, least squares method.
Mots-clés : Markov moment
@article{VSPUI_2023_19_4_a3,
     author = {A. V. Orekhov and V. I. Shishkin and G. V. Kudriavtseva and G. V. Pavilaynen and V. V. Shishkin and N. S. Lyudkevich},
     title = {Automatically obtaining by methods of flow cytometry and cluster analysis simplified leukocyte formula},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {469--483},
     year = {2023},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a3/}
}
TY  - JOUR
AU  - A. V. Orekhov
AU  - V. I. Shishkin
AU  - G. V. Kudriavtseva
AU  - G. V. Pavilaynen
AU  - V. V. Shishkin
AU  - N. S. Lyudkevich
TI  - Automatically obtaining by methods of flow cytometry and cluster analysis simplified leukocyte formula
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2023
SP  - 469
EP  - 483
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a3/
LA  - ru
ID  - VSPUI_2023_19_4_a3
ER  - 
%0 Journal Article
%A A. V. Orekhov
%A V. I. Shishkin
%A G. V. Kudriavtseva
%A G. V. Pavilaynen
%A V. V. Shishkin
%A N. S. Lyudkevich
%T Automatically obtaining by methods of flow cytometry and cluster analysis simplified leukocyte formula
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2023
%P 469-483
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a3/
%G ru
%F VSPUI_2023_19_4_a3
A. V. Orekhov; V. I. Shishkin; G. V. Kudriavtseva; G. V. Pavilaynen; V. V. Shishkin; N. S. Lyudkevich. Automatically obtaining by methods of flow cytometry and cluster analysis simplified leukocyte formula. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 4, pp. 469-483. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a3/

[1] Zurochka A. V., Khaidukov S. V., Kudryavtsev I. V., Chereshnev V. A., Flow cytometry in medicine and biology, 2$^{\rm nd}$ ed., Ural. dept. RAS Publ, Ekaterinburg, 2014, 574 pp. (In Russian)

[2] Balalaeva I. V., Flow cytometry, Educational method. allowance, Nizhny Novgorod State University Press, Nizhny Novgorod, 2014, 75 pp. (In Russian)

[3] Agadzhanyan N. A., Smirnov V. M., Normal physiology, A textbook for medical students, Medical Information Agency Press, M., 2009, 520 pp. (In Russian)

[4] Khaitov R. M., Ignatieva G. A., Sidorovich I. G., Immunology, Textbook, Medicine Publ, M., 2000, 432 pp. (In Russian)

[5] Orekhov A. V., Shishkin V. I., Lyudkevich N. S., “Clusterization of white blood cells on the modified upgmc method”, Stability and Control Processes, Proceedings of the 4$^{\rm th}$ International Conference dedicated to the memory of professor Vladimir Zubov, Springer, Cham, 2022, 559–566 | DOI | MR | Zbl

[6] R. G. Oganova (ed.), Fundamentals of evidence-based medicine, Textbook manual for the system of postgraduate and additional professional education of doctors, Silicea-Poligraf Publ, M., 2010, 136 pp. (In Russian)

[7] Pedersen N. W., Chandran P. A., Qian Y., Rebhahn J., Petersen N. V., Hoff M. D., White S., Lee A. J., Stanton R. H. Ch., Jakobsen K., Mosmann T., Gouttefangeas C., Chan C., Scheuermann R. H., Hadrup S. R., “Automated analysis of flow cytometry data to reduce inter-lab variation in the detection of major histocompatibility complex multimer-binding T cells”, Front Immunol., 8 (2017), 858 pp. | DOI

[8] Daneau G., Buyze J., Wade D., Diaw P. A., Dieye T. N., Sopheak T., Florence E., Lynen L., Kestens L., “CD4 results with a bias larger than hundred cells per microliter can have a significant impact on the clinical decision during treatment initiation of HIV patients”, Cytometry B Clin Cytom., 92:6 (2017), 476–484 | DOI

[9] Qian Y., Kim H., Purawat Sh., Wang J., Stanton R., Lee A., Xu W., Altintas I., Sinkovits R., Scheuermann R. H., “FlowGate: towards extensible and scalable web-based flow cytometry data analysis”, XSEDE '15: Proceedings of the 2015 XSEDE Conference. Scientific advancements enabled by enhanced cyberinfrastructure (July 2015), 5, 1–8 | DOI | MR

[10] Omana-Zapata I., Mutschmann C., Schmitz J., Gibson S., Judge K., Indig M. A., Lu B., Taufman D., Sanfilippo A. M., Shallenberger W., Graminske Sh., McLean R., Hsen R. I., d'Empaire N., Dean K., O'Gorman M., “Accurate and reproducible enumeration of T-, B-, and NK lymphocytes using the BD FACSLyric 10-color system: A multisite clinical evaluation”, PLoS One, 14:1 (2019), e0211207 | DOI

[11] Lepsky A. I., “Comparative analysis of leukocyte clustering algorithms according to FS and SS parameters in cytofluorometric blood tests”, Information technologies, 26:1 (2020), 56–61 (In Russian)

[12] Steinhaus H., “Sur la division des corps materiels en parties”, Bull. Acad. Polon. Sci. C1. III, v. IV, 1956, 801–804 | MR

[13] Lloyd S., “Least squares quantization in PCM”, IEEE Transactions on Information Theory, 28:2 (1982), 129–137 | DOI | MR | Zbl

[14] Dempster A. P., Laird N. M., Rubin D. B., “Maximum Likelihood from incomplete data via the EM algorithm”, Journal of the Royal Statistical Society. Series B, 39:1 (1977), 1–38 | MR | Zbl

[15] Everitt B. S., Cluster analysis, John Wiley Sons Ltd, Chichester, 2011, 330 pp. | MR | Zbl

[16] Hartigan J. A., Clustering algorithms, John Wiley Sons Inc. Press, New York–London–Sydney–Toronto, 1975, 351 pp. | MR | Zbl

[17] Ester M., Kriegel H.- P., Sander J., Xu. X., “A density-based algorithm for discovering clusters in large spatial databases with noise”, Proceedings of the 2$^{\rm nd}$ International Conference on knowledge discovery and data mining (KDD-96), eds. E. Simoudis, J. Han, U. M. Fayyad, AAAI Press, Portland, 1996, 226–231

[18] Weber L. M., Robinson M. D., “Comparison of clustering methods for high-dimensional sngle-cell flow and mass cytometry data”, Cytometry. Pt A, 89A:12 (2016), 1084–1096 | DOI

[19] Zhang C., Xiao X., Li X., Chen Y.-J., Zhen W., Chang J., Zheng Ch., Liu Z., “White blood cell segmentation by color-space-based K-means clustering”, Sensors, 14:9 (2014), 16128–16147 | DOI

[20] Vil M. Yu., “Analysis of the statistical relationship between clinical factors and the appearance of an abnormal subpopulation of leukocytes”, Management Processes and Sustainability, 7:1 (2020), 143–147 (In Russian)

[21] Orekhov A. V., “Markov moment for the agglomerative method of clustering in Euclidean space”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:1 (2019), 76–92 (In Russian) | DOI | MR

[22] Orekhov A. V., “Quasi-deterministic processes with monotonic trajectories and unsupervised machine learning”, Mathematics, 9 (2021), 2301 | DOI

[23] Bulinsky A. V., Shiryaev A. N., Theory of random processes, Fizmatlit Publ, M., 2003, 400 pp. (In Russian)

[24] Wald A., Sequential analysis, John Wiley Sons. Inc. Press, New York, 1947, 212 pp. | MR

[25] Sirjaev A. N., Statistical sequential analysis: Optimal stopping rules, American Mathematical Society, Providence, Rhode Island, 1973, 174 pp. | MR | Zbl

[26] Milligan G. W., “Ultrametric hierarchical clustering algorithms”, Psychometrika, 44:3 (1979), 343–346 | DOI | MR | Zbl