@article{VSPUI_2023_19_4_a2,
author = {I. V. Olemskoy and A. S. Eremin and O. S. Firyulina},
title = {A nine-parametric family of embedded methods of sixth order},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {449--468},
year = {2023},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a2/}
}
TY - JOUR AU - I. V. Olemskoy AU - A. S. Eremin AU - O. S. Firyulina TI - A nine-parametric family of embedded methods of sixth order JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2023 SP - 449 EP - 468 VL - 19 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a2/ LA - ru ID - VSPUI_2023_19_4_a2 ER -
%0 Journal Article %A I. V. Olemskoy %A A. S. Eremin %A O. S. Firyulina %T A nine-parametric family of embedded methods of sixth order %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2023 %P 449-468 %V 19 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a2/ %G ru %F VSPUI_2023_19_4_a2
I. V. Olemskoy; A. S. Eremin; O. S. Firyulina. A nine-parametric family of embedded methods of sixth order. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 4, pp. 449-468. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a2/
[1] Olemskoy I. V., “An algorithm for finding the structural properties”, Nikolai Efimovich Kirin, Papers dedicated to the memory, Research Institute of Chemistry of St. Petesburg State University Publ, St. Petersburg, 2003, 224–250 (In Russian)
[2] Olemskoy I. V., “Updating of algorithm of allocation structural features”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2006, no. 2, 55–64 (In Russian)
[3] Olemskoy I. V., Integration of structurally partitioned systems of ordinary differential equations, St. Petersburg State University Press, St. Petersburg, 2009, 180 pp. (In Russian)
[4] Olemskoy I. V., “Structural approach to the design of explicit one-stage methods”, Comput Math. and Math. Phys., 43:7 (2003), 918–931 (In Russian) | MR
[5] Butcher J. C., “On Runge — Kutta processes of high order”, Journal of the Australian Mathematical Society, 4 (1964), 179–194 | DOI | MR | Zbl
[6] Hairer E., Nørsett S. P., Wanner G., Solving ordinary differential equations. I: Nonstiff problems, 2$^{\rm nd}$ ed., 3$^{\rm rd}$ corr. print, Springer-Verlag, Heidelberg–Berlin, 2008, 528 pp. | MR
[7] Olemskoy I. V., “Fifth-order four-stage method for numerical integration of special systems”, Comput. Math. and Math. Phys., 42:8 (2002), 1135–1145 (In Russian) | MR | Zbl
[8] Olemskoy I. V., “A fifth-order five-stage embedded method of the Dormand — Prince type”, Comput Math. and Math. Phys., 45:7 (2005), 1140–1150 (In Russian) | MR
[9] Eremin A. S., Olemskoy I. V., “An embedded method for integrating systems of structurally separated ordinary differential equations”, Comput Math. and Math. Phys., 50:3 (2010), 434–448 (In Russian) | MR | Zbl
[10] Olemskoy I. V., Kovrizhnykh N. A., “A family of sixth-order methods with six stages”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:3 (2018), 215–229 (In Russian) | DOI | MR
[11] Eremin A. S., Kovrizhnykh N.A., Olemskoy I. V., “An explicit one-step multischeme sixth order method for systems of special structure”, Applied Mathematics and Computation, 347 (2019), 853–864 | DOI | MR | Zbl
[12] Olemskoy I. V. Kovrizhnykh N. A, Firyulina O. S., “Two-parametric family of sixth order numerical methods for solving systems of ordinary differential equations”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:4 (2019), 502–517 (In Russian) | DOI | MR
[13] Olemskoy I. V., Firyulina O. S., Tumka O. A., “Families of embedded methods of order six”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18:2 (2022), 285–296 (In Russian) | DOI | MR
[14] Olemskoy I. V., Eremin A. S., “Algorithm of construction of effective explicit methods for structurally partitioned systems of ordinary differential equations”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:4 (2021), 353–369 | DOI | MR
[15] Dormand J. R., Prince P. J., “A family of embedded Runge — Kutta formulae”, Journal of Computational and Applied Mathematics, 6:1 (1980), 19–26 | DOI | MR | Zbl
[16] Dormand J. R., Prince P. J., “High order embedded Runge — Kutta formulae”, Journal of Computational and Applied Mathematics, 7:1 (1981), 67–75 | DOI | MR | Zbl