@article{VSPUI_2023_19_3_a6,
author = {A. Yu. Zhadan and H. Wu and P. S. Kudin and Y. Zhang and O. L. Petrosian},
title = {Microgrid control for renewable energy sources based on deep reinforcement learning and numerical optimization approaches},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {391--402},
year = {2023},
volume = {19},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a6/}
}
TY - JOUR AU - A. Yu. Zhadan AU - H. Wu AU - P. S. Kudin AU - Y. Zhang AU - O. L. Petrosian TI - Microgrid control for renewable energy sources based on deep reinforcement learning and numerical optimization approaches JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2023 SP - 391 EP - 402 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a6/ LA - en ID - VSPUI_2023_19_3_a6 ER -
%0 Journal Article %A A. Yu. Zhadan %A H. Wu %A P. S. Kudin %A Y. Zhang %A O. L. Petrosian %T Microgrid control for renewable energy sources based on deep reinforcement learning and numerical optimization approaches %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2023 %P 391-402 %V 19 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a6/ %G en %F VSPUI_2023_19_3_a6
A. Yu. Zhadan; H. Wu; P. S. Kudin; Y. Zhang; O. L. Petrosian. Microgrid control for renewable energy sources based on deep reinforcement learning and numerical optimization approaches. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 3, pp. 391-402. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a6/
[1] Markelova A., Petrosian O., Laistseva M., “Microgrid management with energy storage system and renewable energy generation”, Control Processes and Stability, 8:1 (2021), 430–434
[2] Hatziargyriou N. D., “Special issue on microgrids and energy management”, European transactions on electrical power, 21:2 (2011), 1139–1141 | DOI
[3] Reddy P. P., Veloso M. M., “Strategy learning for autonomous agents in smart grid markets”, Twenty-Second International Joint Conference on Artificial Intelligence (Barcelona, 2011), 1446–1451
[4] Chen C., Duan S., Cai T., Liu B., Hu G., “Smart energy management system for optimal microgrid economic operation”, IET Renewable Power Generation, 5:3 (2011), 258–267 | DOI | MR
[5] Mohamed F. A., Koivo H. N., “System modelling and online optimal management of microgrid with battery storage”, 6$^{th}$ International Conference on renewable energies and power quality (ICREPQ'07) (Sevilla, 2007), 26–28
[6] Colson C., Nehrir M., Pourmousavi S., “Towards real-time microgrid power management using computational intelligence methods”, IEEE PES general meeting, IEEE, 2010, 1–8
[7] Abdilahi A. M., Mustafa M., Aliyu G., Usman J., “Autonomous Integrated Microgrid (AIMG) system: Review of Potential”, International Journal of Education and Research, 2:1 (2014), 1–18
[8] Mnih V., Kavukcuoglu K., Silver D., Graves A., Antonogłou I., Wierstra D., Riedmiller M., Playing atari with deep reinforcement learning, 2013, arXiv: 1312.5602
[9] Perera A., Kamalaruban P., “Applications of reinforcement learning in energy systems”, Renewable and Sustainable Energy Reviews, 137 (2021), 1–22 | DOI | MR
[10] Muriithi G., Chowdhury S., “Optimal energy management of a grid-tied solar pv-battery microgrid: A reinforcement learning approach”, Energies, 14:9 (2021), 1–24 | DOI
[11] Wei C., Zhang Z., Qiao W., Qu L., “Reinforcement-learning-based intelligent maximum power point tracking control for wind energy conversion systems”, IEEE Transactions on Industrial Electronics, 62:10 (2015), 6360–6370 | DOI
[12] Xi L., Yu L., Fu Y., Huang Y., “Automatic generation control based on deep reinforcement learning with exploration awareness”, Proceedings of the CSEE, 39:14 (2019), 4150–4162
[13] Wang B., Zhou M., Xin B., Zhao X., Watada J., “Analysis of operation cost and wind curtailment using multi-objective unit commitment with battery energy storage”, Energy, 178 (2019), 101–114 | DOI
[14] Gao Y., Yang J., Yang M., Li Z., “Deep reinforcement learning based optimal schedule for a battery swapping station considering uncertainties”, IEEE Transactions on Industry Applications, 56:5 (2020), 5775–5784 | DOI
[15] Kell A. J., McGough A. S., Forshaw M., Optimizing a domestic battery and solar photovoltaic system with deep reinforcement learning, 2021, arXiv: 2109.05024
[16] Wu Y., Tan H., Peng J., Zhang H., He H., “Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus”, Applied Energy, 247 (2019), 454–466 | DOI
[17] Duan Y., Chen X., Houthooft R., Schulman J., Abbeel P., “Benchmarking deep reinforcement learning for continuous control”, International Conference on Machine Learning (New York, 2016), 1329–1338
[18] Official website Schneider Electric, (accessed: March 1, 2022) https://www.se.com/ww/en/
[19] Power Laws: Optimizing Demand-side Strategies (accessed: March 1, 2022) www.drivendata.org/competitions/53/optimize-photovoltaic-battery/
[20] Sedighizadeh M., Esmaili M., Mohammadkhani N., “Stochastic multi-objective energy management in residential microgrids with combined cooling, heating, and power units considering battery energy storage systems and plug-in hybrid electric vehicles”, Journal of Cleaner Production, 195 (2018), 301–317 | DOI
[21] Sutton R. S., Barto A. G., Reinforcement learning: An introduction, MIT Press, London, 2018, 590 pp. | MR | Zbl
[22] Babaeizadeh M., Frosio I., Tyree S., Clemons J., Kautz J., Reinforcement learning through asynchronous advantage actor-critic on a GPU, 2016, arXiv: 1611.06256
[23] Schulman J., Wolski F., Dhariwal P., Radford A., Klimov O., Proximal policy optimization algorithms, 2017, arXiv: 1707.06347
[24] Fujimoto S., Hoof H., Meger D., “Addressing function approximation error in actor-critic methods”, International Conference on Machine Learning, PMLR, 2018, 1587–1596
[25] Haarnoja T., Zhou A., Abbeel P., Levine S., “Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor”, International Conference on Machine Learning, PMLR, 2018, 1861–1870
[26] Mittelmann H., “Latest benchmark results”, Proceedings of the INFORMS Annual Conference (Phoenix, 2018), 4–7 | Zbl
[27] Brockman G., Cheung V., Pettersson L., Schneider J., Schulman J., Tang J., Zaremba W., OpenAI Gym, 2016, arXiv: 1606.01540