Examining the possibility of insurance contract conclusion based on utility function
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 3, pp. 369-373
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of a potential insurance contract conclusion is considered taking into account client's money utility function. A basic model is employed for practical calculations and a formula is proposed and tried for two utility functions corresponding to polar income decile groups. Conclusions are made with suggested future research directons.
Keywords:
insurance, utility, risk.
@article{VSPUI_2023_19_3_a4,
author = {A. V. Sachkov},
title = {Examining the possibility of insurance contract conclusion based on utility function},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {369--373},
year = {2023},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a4/}
}
TY - JOUR AU - A. V. Sachkov TI - Examining the possibility of insurance contract conclusion based on utility function JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2023 SP - 369 EP - 373 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a4/ LA - ru ID - VSPUI_2023_19_3_a4 ER -
%0 Journal Article %A A. V. Sachkov %T Examining the possibility of insurance contract conclusion based on utility function %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2023 %P 369-373 %V 19 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a4/ %G ru %F VSPUI_2023_19_3_a4
A. V. Sachkov. Examining the possibility of insurance contract conclusion based on utility function. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 3, pp. 369-373. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a4/
[1] Bowers N. L., Gerber H. U., Hickman J. C., Jones D. A, Nesbitt C. J., Actuarial mathematics, 2$^{\rm nd}$ ed, The Society of Actuaries, Chicago, 1997, 753 pp. | MR
[2] Bure V. M., Parilina E. M., Probability and statistics, Lan' Publ, St. Petersburg, 2013, 416 pp. (In Russian)
[3] Federal State Statistics Service (accessed: February 19, 2023)
[4] Noghin V. D., Reduction of the Pareto set: an axiomatic approach, Fizmatlit Publ, M., 2018, 272 pp. (In Russian)