Theoretical foundation for solving search problems by the method of maximum entropy
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 3, pp. 348-368 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The traditional problem of search theory is to develop a search plan for a physical object in the sea or on land. Known algorithms for the optimal distribution of search resources mainly use the exponential detection function. If we consider the search problem more broadly — as a problem of searching for various information, then the detection function can differ significantly from the exponential one. In this case, the solutions obtained using traditional algorithms may be correct from the point of view of mathematics, but unacceptable from the point of view of logic. In this paper, this problem is solved on the basis of the maximum entropy principle. The theorems are proved, as well as their consequences for four types of detection functions, which make it possible to create algorithms for solving various search problems based on the principle of maximum entropy.
Keywords: information theory, search theory, uniformly optimal search plan, detection function, maximum entropy principle.
@article{VSPUI_2023_19_3_a3,
     author = {A. N. Prokaev},
     title = {Theoretical foundation for solving search problems by the method of maximum entropy},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {348--368},
     year = {2023},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a3/}
}
TY  - JOUR
AU  - A. N. Prokaev
TI  - Theoretical foundation for solving search problems by the method of maximum entropy
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2023
SP  - 348
EP  - 368
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a3/
LA  - ru
ID  - VSPUI_2023_19_3_a3
ER  - 
%0 Journal Article
%A A. N. Prokaev
%T Theoretical foundation for solving search problems by the method of maximum entropy
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2023
%P 348-368
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a3/
%G ru
%F VSPUI_2023_19_3_a3
A. N. Prokaev. Theoretical foundation for solving search problems by the method of maximum entropy. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 3, pp. 348-368. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a3/

[1] Ackoff R. L., Sasieni M. W., Fundamentals of operations research, John Wiley Sons, Inc. Publ, New York, 1967, 455 pp. | MR | MR

[2] Ahlswede R., Wegener I., Suchprobleme, (eng. Search Problems), Teubner Verlag Publ, Stuttgart, 1979, 273 pp. | MR | Zbl

[3] H. Aydinian, F. Cicalese, C. Deppe (eds.), Information theory, combinatorics, and search theory: In memory of Rudolf Ahlswede, Lecture Notes in Computer Science, 7777, Springer, Cambrige, 2013, 773 pp. | DOI | MR | Zbl

[4] Jaynes E. T., “Entropy and search theory”, Maximum-entropy and Bayesian methods in inverse problems, Fundamental theories of physics, 14, Springer, Dordrecht, Netherlands, 1985, 1–18 | MR

[5] Prokaev A. N., “The maximum entropy principle in search theory”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19:1 (2023), 27–42 (In Russian) | DOI | MR

[6] Stone L. D., Royset J. O., Washburn A. R., Optimal search for moving targets, International Series in Operations Research Management Science, 237, Springer, Switzerland, 2016, 312 pp. | DOI | MR | Zbl

[7] Prokaev A. N., Search efforts optimal distribution based on the posteriori entropy analysis. Research, Online publication. February 20 2016 (accessed: April 19, 2023) https://www.researchgate.net/publication/295254267_Search_Efforts_Optimal_Distribution_Based_on_the_Posteriori_Entropy_Analysis?channel=doi&linkId=56c89bbd08ae5488f0d6f43f&showFulltext=true | DOI

[8] Pierce J. G., “A new look at the relation between information theory and search theory”, The maximum entropy formalism, MIT Press, Cambridge, 1978, 339–402 | MR