Deformation of a plane modelled by John's material with a rigid elliptical inclusion loaded by force and moment
    
    
  
  
  
      
      
      
        
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 3, pp. 337-347
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An exact analytical solution is obtained for a non-linear problem of elasticity theory for a plane with a rigid elliptical inclusion. A concentrated force and a moment are applied at the center of inclusion. The elastic properties of the plane are modeled by John's harmonic material. For this material methods of the theory of functions of a complex variable are using for solving nonlinear plane problems. Nominal stresses and displacements are expressed in terms of two analytical functions of a complex variable, which are determined from the boundary conditions on the contour of inclusion. The problems of the action of a concentrated force and moment on an elliptical core in a plane are considered separately. A comparison with a similar linear problem is made. The influence of the applied force and moment on the magnitude of stresses is studied depending on various parameters of the problem. Calculations of nominal stresses on the contour joining the plane with inclusion are performed.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
non-linear plane problem, rigid elliptical inclusion, John's harmonic material, concentrated force and moment.
                    
                  
                
                
                @article{VSPUI_2023_19_3_a2,
     author = {Yu. V. Malkova},
     title = {Deformation of a plane modelled by {John's} material with a rigid elliptical inclusion loaded by force and moment},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {337--347},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a2/}
}
                      
                      
                    TY - JOUR AU - Yu. V. Malkova TI - Deformation of a plane modelled by John's material with a rigid elliptical inclusion loaded by force and moment JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2023 SP - 337 EP - 347 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a2/ LA - ru ID - VSPUI_2023_19_3_a2 ER -
%0 Journal Article %A Yu. V. Malkova %T Deformation of a plane modelled by John's material with a rigid elliptical inclusion loaded by force and moment %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2023 %P 337-347 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a2/ %G ru %F VSPUI_2023_19_3_a2
Yu. V. Malkova. Deformation of a plane modelled by John's material with a rigid elliptical inclusion loaded by force and moment. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 3, pp. 337-347. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a2/
