Deformation of a plane modelled by John's material with a rigid elliptical inclusion loaded by force and moment
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 3, pp. 337-347 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An exact analytical solution is obtained for a non-linear problem of elasticity theory for a plane with a rigid elliptical inclusion. A concentrated force and a moment are applied at the center of inclusion. The elastic properties of the plane are modeled by John's harmonic material. For this material methods of the theory of functions of a complex variable are using for solving nonlinear plane problems. Nominal stresses and displacements are expressed in terms of two analytical functions of a complex variable, which are determined from the boundary conditions on the contour of inclusion. The problems of the action of a concentrated force and moment on an elliptical core in a plane are considered separately. A comparison with a similar linear problem is made. The influence of the applied force and moment on the magnitude of stresses is studied depending on various parameters of the problem. Calculations of nominal stresses on the contour joining the plane with inclusion are performed.
Keywords: non-linear plane problem, rigid elliptical inclusion, John's harmonic material, concentrated force and moment.
@article{VSPUI_2023_19_3_a2,
     author = {Yu. V. Malkova},
     title = {Deformation of a plane modelled by {John's} material with a rigid elliptical inclusion loaded by force and moment},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {337--347},
     year = {2023},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a2/}
}
TY  - JOUR
AU  - Yu. V. Malkova
TI  - Deformation of a plane modelled by John's material with a rigid elliptical inclusion loaded by force and moment
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2023
SP  - 337
EP  - 347
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a2/
LA  - ru
ID  - VSPUI_2023_19_3_a2
ER  - 
%0 Journal Article
%A Yu. V. Malkova
%T Deformation of a plane modelled by John's material with a rigid elliptical inclusion loaded by force and moment
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2023
%P 337-347
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a2/
%G ru
%F VSPUI_2023_19_3_a2
Yu. V. Malkova. Deformation of a plane modelled by John's material with a rigid elliptical inclusion loaded by force and moment. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 3, pp. 337-347. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a2/

[1] John F., “Plane strain problems for a perfectly elastic material of harmonic type”, Commun. Pure and Applied Mathematics, 13:2 (1960), 239–296 | DOI | MR | Zbl

[2] Malkov V. M., Introduction to non-linear elasticity, Saint Petersburg State University Press, St. Petersburg, 2010, 276 pp. (In Russian)

[3] Mal'kov V. M., Mal'kova Y. V., “Modeling nonlinear deformation of a plate with an elliptic inclusion by John's harmonic material”, Vestnik of Saint Petersburg University. Mathematics, 50:1 (2017), 74–81 | DOI | MR | Zbl

[4] Varley E., Cumberbatch E., “Finite deformation of elastic materials surrounding cylindrical holes”, Journal of Elasticity, 10:4 (1980), 341–405 | DOI | Zbl

[5] Ru C. Q., “On complex-variable formulation for finite plane elastostatics of harmonic materials”, Acta Mechanica, 156:3–4 (2002), 219–234 | Zbl

[6] Ru C. Q., Schiavone P., Sudak L. J., Mioduchowski A., “Uniformity of stresses inside an elliptic inclusion in finite plane elastostatics”, International Journal of Non-linear Mechanics, 38:2–3 (2005), 281–287 | MR

[7] Malkov V. M., Malkova Yu. V., “Plane problem of non-linear elasticity for harmonic material”, Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2008, no. 3, 114–126 (In Russian)

[8] Malkov V. M., Malkova Yu. V., Stepanova V. A., “Bi-material plane modelled by John's material with pressure-loaded interfacial crack”, Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2013, no. 3, 113–125 (In Russian)

[9] Mal'kov V. M., Mal'kova Yu. V., “Deformation of a plate with elliptic elastic inclusion”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2(60):4 (2015) (In Russian) | MR

[10] Muskhelishvili N. I., Some basic problems of mathematical theory of elasticity, Nauka Publ, M., 1966, 708 pp. (In Russian) | MR