@article{VSPUI_2023_19_3_a2,
author = {Yu. V. Malkova},
title = {Deformation of a plane modelled by {John's} material with a rigid elliptical inclusion loaded by force and moment},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {337--347},
year = {2023},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a2/}
}
TY - JOUR AU - Yu. V. Malkova TI - Deformation of a plane modelled by John's material with a rigid elliptical inclusion loaded by force and moment JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2023 SP - 337 EP - 347 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a2/ LA - ru ID - VSPUI_2023_19_3_a2 ER -
%0 Journal Article %A Yu. V. Malkova %T Deformation of a plane modelled by John's material with a rigid elliptical inclusion loaded by force and moment %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2023 %P 337-347 %V 19 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a2/ %G ru %F VSPUI_2023_19_3_a2
Yu. V. Malkova. Deformation of a plane modelled by John's material with a rigid elliptical inclusion loaded by force and moment. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 3, pp. 337-347. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a2/
[1] John F., “Plane strain problems for a perfectly elastic material of harmonic type”, Commun. Pure and Applied Mathematics, 13:2 (1960), 239–296 | DOI | MR | Zbl
[2] Malkov V. M., Introduction to non-linear elasticity, Saint Petersburg State University Press, St. Petersburg, 2010, 276 pp. (In Russian)
[3] Mal'kov V. M., Mal'kova Y. V., “Modeling nonlinear deformation of a plate with an elliptic inclusion by John's harmonic material”, Vestnik of Saint Petersburg University. Mathematics, 50:1 (2017), 74–81 | DOI | MR | Zbl
[4] Varley E., Cumberbatch E., “Finite deformation of elastic materials surrounding cylindrical holes”, Journal of Elasticity, 10:4 (1980), 341–405 | DOI | Zbl
[5] Ru C. Q., “On complex-variable formulation for finite plane elastostatics of harmonic materials”, Acta Mechanica, 156:3–4 (2002), 219–234 | Zbl
[6] Ru C. Q., Schiavone P., Sudak L. J., Mioduchowski A., “Uniformity of stresses inside an elliptic inclusion in finite plane elastostatics”, International Journal of Non-linear Mechanics, 38:2–3 (2005), 281–287 | MR
[7] Malkov V. M., Malkova Yu. V., “Plane problem of non-linear elasticity for harmonic material”, Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2008, no. 3, 114–126 (In Russian)
[8] Malkov V. M., Malkova Yu. V., Stepanova V. A., “Bi-material plane modelled by John's material with pressure-loaded interfacial crack”, Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2013, no. 3, 113–125 (In Russian)
[9] Mal'kov V. M., Mal'kova Yu. V., “Deformation of a plate with elliptic elastic inclusion”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2(60):4 (2015) (In Russian) | MR
[10] Muskhelishvili N. I., Some basic problems of mathematical theory of elasticity, Nauka Publ, M., 1966, 708 pp. (In Russian) | MR