Mots-clés : implicit Euler method
@article{VSPUI_2023_19_3_a0,
author = {A. Yu. Aleksandrov},
title = {Application of the implicit {Euler} method for the discretization of some classes of nonlinear systems},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {304--319},
year = {2023},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a0/}
}
TY - JOUR AU - A. Yu. Aleksandrov TI - Application of the implicit Euler method for the discretization of some classes of nonlinear systems JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2023 SP - 304 EP - 319 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a0/ LA - ru ID - VSPUI_2023_19_3_a0 ER -
%0 Journal Article %A A. Yu. Aleksandrov %T Application of the implicit Euler method for the discretization of some classes of nonlinear systems %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2023 %P 304-319 %V 19 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a0/ %G ru %F VSPUI_2023_19_3_a0
A. Yu. Aleksandrov. Application of the implicit Euler method for the discretization of some classes of nonlinear systems. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 3, pp. 304-319. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a0/
[1] The stability problem of control processes, Sudpromgiz Publ., L., 1980, 253 pp. (In Russian)
[2] Qualitative theory of impulsive systems, Transl. from Romanian, ed. V. P. Rubanik, Mir Publ., M., 1971, 312 pp. (In Russian)
[3] Martynyuk D. I., Lectures on the qualitative theory of difference equations, Naukova Dumka Publ, Kiev, 1972, 246 pp. (In Russian) | MR
[4] Igaadi A., Mghari H. E., Amraoui R. E., “Numerical investigation into the effects of orientation on subcooled flow boiling characteristics”, Journal of Applied and Computational Mechanics, 9:2 (2023), 464–474
[5] “Point control of a differential-difference system with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:3 (2021), 277–286 | DOI | MR
[6] “Optimal control of a differential-difference parabolic systems with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:4 (2021), 433–448 | DOI | MR
[7] Butcher J. C., Numerical methods for ordinary differential equations, John Wiley Sons, New York, 2003, 463 pp. | MR
[8] Dekker K., Verwer J. G., Stability of Runge — Kutta methods for stiff nonlinear differential equations, North-Holland, Amsterdam, 1984, 307 pp. | MR | Zbl
[9] Olemskoy I. V., Firyulina O. S., Tumka O. A., “Families of embedded methods of order six”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18:2 (2022), 285–296 (In Russian) | DOI | MR
[10] Zubov V. I., “Conservative numerical methods for integrating differential equations in nonlinear mechanics”, Dokl. RAN, 354:4 (1997), 446–448 (In Russian) | MR | Zbl
[11] Gonzalez C., Ostermann A., Palencia C., Thalhammer M., “Backward Euler discretization of fully nonlinear parabolic problems”, Mathematics of Computation, 71:237 (2002), 125–145 | DOI | MR | Zbl
[12] Merlet B., Pierre M., “Convergence to equilibrium for the backward Euler scheme and applications”, Communications on Pure and Applied Analysis, 9:3 (2010), 685–702 | DOI | MR | Zbl
[13] Acary V., Brogliato B., “Implicit Euler numerical scheme and chattering-free implementation of sliding mode systems”, Systems and Control Letters, 59 (2010), 284–293 | DOI | MR | Zbl
[14] Efimov D., Polyakov A., Levant A., Perruquetti W., “Realization and discretization of asymptotically stable homogeneous systems”, IEEE Transactions on Automatic Control, 62:11 (2017), 5962–5969 | DOI | MR | Zbl
[15] Brogliato B., Polyakov A., Efimov D., “The implicit discretization of the supertwisting sliding-mode control algorithm”, IEEE Transactions on Automatic Control, 65:8 (2020), 3707–3713 | DOI | MR
[16] Efimov D., Polyakov A., Aleksandrov A., “Discretization of homogeneous systems using Euler method with a state-dependent step”, Automatica, 109 (2019), 108546 | DOI | MR | Zbl
[17] Brogliato B., Polyakov A., “Digital implementation of sliding-mode control via the implicit method: A tutorial”, International Journal of Robust and Nonlinear Control, 31:9 (2021), 3528–3586 | DOI | MR | Zbl
[18] “On the stability of solutions of a class of nonlinear difference systems”, Siberian Mathematical Journal, 44:6 (2003), 1217–1225 (In Russian) | MR | Zbl
[19] “On the preservation of stability under discretization of systems of ordinary differential equations”, Siberian Mathematical Journal, 51:3 (2010), 481–497 (In Russian) | MR | Zbl
[20] Persidskii S. K., “Problem of absolute stability”, Automation and Remote Control, 1969, no. 12, 1889–1895 | MR | Zbl
[21] Kaszkurewicz E., Bhaya A., Matrix diagonal stability in systems and computation, Birkhauser Press, Boston–Basel–Berlin, 1999, 267 pp. | MR
[22] Hofbauer J., Sigmund K., Evolutionary games and population dynamics, Cambridge University Press, Cambridge, 1998, 323 pp. | MR | Zbl
[23] Erickson K., Michel A., “Stability analysis of fixed-point digital filters using computer generated Lyapunov functions. Pt I: Direct form and coupled form filters”, IEEE Transactions on Circuits and Systems, 32 (1985), 113–132 | DOI | MR | Zbl
[24] Hopfield J., Tank D., “Computing with neural circuits: a model”, Science, 233 (1986), 625–633 | DOI
[25] Sandberg I. W., Willson A. N., “Some theorems on properties of DC equations of nonlinear networks”, The Bell System Technical Journal, 48 (1969), 1–34 | DOI | MR
[26] Aleksandrov A. Yu., “On stability in nonlinear approximation of a class of nonautonomous systems”, Differential Equations, 36:7 (2000), 993–995 (In Russian) | MR | Zbl
[27] Lurie A. I., Some nonlinear problems in the theory of automatic control, Gostehizdat Publ., M., 1951, 216 pp. (In Russian) | MR
[28] Rouche N., Habets P., Laloy M., Stability theory by Liapunov's direct method, Springer, New York, 1977, 396 pp. | MR
[29] Liao X., Yu P., Absolute stability of nonlinear control systems, Springer, New York, 2008, 384 pp. | MR | Zbl
[30] Aleksandrov A., Aleksandrova E., Zhabko A., “Asymptotic stability conditions and estimates of solutions for nonlinear multiconnected time-delay systems”, Circuits, Systems, and Signal Processing, 35 (2016), 3531–3554 | DOI | MR | Zbl
[31] Aleksandrov A., Aleksandrova E., “Delay-independent stability conditions for a class of nonlinear difference systems”, Journal of the Franklin Institute, 355 (2018), 3367–3380 | DOI | MR | Zbl
[32] Aleksandrov A. Yu., “On the asymptotic stability of solutions of nonlinear nonautonomous systems”, Proceedings of RAN. Theory and control systems, 1999, no. 2, 5–9 (In Russian) | Zbl
[33] Introduction to the stability theory, Nauka Publ., M., 1976, 320 pp. (In Russian)