Mots-clés : singular perturbation
@article{VSPUI_2023_19_2_a4,
author = {A. T. Mustafin and A. K. Kantarbayeva},
title = {Clearing function in the context of the invariant manifold method},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {185--198},
year = {2023},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a4/}
}
TY - JOUR AU - A. T. Mustafin AU - A. K. Kantarbayeva TI - Clearing function in the context of the invariant manifold method JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2023 SP - 185 EP - 198 VL - 19 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a4/ LA - ru ID - VSPUI_2023_19_2_a4 ER -
%0 Journal Article %A A. T. Mustafin %A A. K. Kantarbayeva %T Clearing function in the context of the invariant manifold method %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2023 %P 185-198 %V 19 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a4/ %G ru %F VSPUI_2023_19_2_a4
A. T. Mustafin; A. K. Kantarbayeva. Clearing function in the context of the invariant manifold method. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 2, pp. 185-198. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a4/
[1] Vacanti D., When will it be done?: Lean-agile forecasting to answer your customers' most important question, Lightning Source Inc., La Vergne, TN, 2020, 308 pp.
[2] Little J., “A proof for the queuing formula: $L = \lambda W$”, Operations Research, 9:3 (1961), 383–387 | DOI | MR | Zbl
[3] Little J., Graves S., “Little's law”, Building intuition: Insights from basic operations management models and principles, eds. D. Chhajed, T. Lowe, Springer, London, 2008, 81–100 | DOI
[4] Armbruster D., Uzsoy R., “Continuous dynamic models, clearing functions, and discrete-event simulation in aggregate production planning”, New directions in informatics, optimization, logistics, and production. Tutorials in operations research, INFORMS 2012, ed. P. Mirchandani, 2012, 103–126 | DOI
[5] Graves S., “A tactical planning model for a job shop”, Operations Research, 34:4 (1986), 522–533 | DOI | MR | Zbl
[6] Karmarkar U., “Capacity loading and release planning with work-in-progress (WIP) and lead-times”, Journal of Manufacturing and Operations Management, 2:1 (1989), 105–123 https://www.iaorifors.com/paper/3710
[7] Karmarkar U., “Manufacturing lead times, order release and capacity loading”, Logistics of production and inventory, eds. S. Graves, A. Rinnooy Kan, P. Zipkin, North-Holland Publishing, Amsterdam, 1993, 287–329 | DOI
[8] Srinivasan A., Carey M., Morton T., Resource pricing and aggregate scheduling in manufacturing systems, Working Paper No 88-89-58, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, 1988, 51 pp. https://econpapers.repec.org/paper/cmugsiawp/88-89-58.htm
[9] Missbauer H., Uzsoy R., Production planning with capacitated resources and congestion, Springer, New York, 2020, 295 pp. | DOI | MR
[10] Missbauer H., “Order release planning with clearing functions: A queueing-theoretical analysis of the clearing function concept”, International Journal of Production Economics, 131:1 (2011), 399–406 | DOI
[11] Armbruster D., “The production planning problem: Clearing functions, variable lead times, delay equations and partial differential equations”, Decision policies for production networks, eds. D. Armbruster, K. Kempf, Springer, London, 2012, 289–302 | DOI
[12] Cornish-Bowden A., Fundamentals of enzyme kinetics, 4$^{\rm th}$ ed., Wiley-Blackwell Publ, Weinheim, 2012, 498 pp.
[13] Georgescu-Roegen N., Analytical economics: Issues and problems, Harvard University Press, Cambridge, MA, 1966, 434 pp. | DOI
[14] Kolesova G. I., Poletaev I. A., “Selected problems in research of the systems with limiting factors”, Controllable systems, 3, Institute of Mathematics, Siberian Branch of the USSR Academy of Sciences Publ., Novosibirsk, 1969, 71–80 (In Russian)
[15] Romanovskii Yu. M., Stepanova N. M., Chernavskii D. S., What is mathematical biophysics: The kinetic models in biophysics, Prosveshchenie Publ, M., 1971, 136 pp. (In Russian)
[16] Mustafin A. T., A bottleneck principle for techno-metabolic chains, Discussion Paper No 504, Institute of Economic Research, Kyoto University, Kyoto, 1999, 13 pp. | DOI
[17] Milovanov V. P., Nonequilibrium social-economic systems: Synergetics and self-organization, Editorial URSS Publ., M., 2001, 264 pp. (In Russian)
[18] Ponzi A., Yasutomi A., Kaneko K., “A non-linear model of economic production processes”, Physica A: Statistical Mechanics and its Applications, 324:1–2 (2003), 372–379 | DOI | Zbl
[19] Niyirora J., Zhuang J., “Fluid approximations and control of queues in emergency departments”, European Journal of Operational Research, 261:3 (2017), 1110–1124 | DOI | MR | Zbl
[20] Mustafin A. T., Kantarbayeva A. K., “A catalytic model of service as applied to the case of a cyclic queue”, Proceedings of Higher Educational Institutes. Applied Nonlinear Dynamics, 27:5 (2019), 53–71 (In Russian) | DOI
[21] Bradt L., The automated factory: Myth or reality?, Engineering: Cornell Quarterly, 17:3 (1983), 26–31 https://ecommons.cornell.edu/handle/1813/2422
[22] Hopp W., Spearman M., Factory physics: Foundations of manufacturing management, 3$^{\rm rd}$ ed., McGraw-Hill, New York, 2008, 720 pp.
[23] Vasil'eva A. B., Butuzov V. F., Asymptotic methods in singular perturbations theory, Vysshaia shkola Publ, M., 1990, 207 pp. (In Russian) | MR
[24] Verhulst F., Methods and applications of singular perturbations: Boundary layers and multiple timescale dynamics, Springer, New York, 2005, 328 pp. | MR | Zbl
[25] Shchepakina E., Sobolev V., Mortel M., Singular perturbations. Introduction to system order reduction methods with applications, Springer, New York, 2014, 212 pp. | DOI | MR | Zbl
[26] Tikhonov A. N., “Systems of differential equations containing small parameters at the derivatives”, Sbornik Mathematics, 31(73):3 (1952), 575–586 (In Russian) | Zbl
[27] Johnson K., Goody R., “The original Michaelis constant: Translation of the 1913 Michaelis — Menten paper”, Biochemistry, 50:39 (2011), 8264–8269 | DOI
[28] Holling C., “The components of predation as revealed by a study of small-mammal predation of the European pine sawfly”, The Canadian Entomologist, 91:5 (1959), 293–320 | DOI
[29] Monod J., “The growth of bacterial cultures”, Annual Review of Microbiology, 3:1 (1949), 371–394 | DOI
[30] Whitt W., “Time-varying queues”, Queueing Models and Service Management, 1:2 (2018), 79–164 http://140.120.49.88/index.php/qmsm/article/view/33 | MR