On the infuence of the cental trend on the nature of the density distribution of maximum entropy in machine learning
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 2, pp. 176-184

Voir la notice de l'article provenant de la source Math-Net.Ru

The principle of maximum entropy (ME) has a number of advantages that allow it to be used in machine learning. The density distribution of maximum entropy (WEO) requires solving the problem of calculus of variations on the a priori distribution, where the central tendency can be used as a parameter. In Lebesgue space, the central tendency is described by the generalized Gelder average. The paper shows the evolution of the density of the ME distribution depending on the given norm of the average. The minimum Kulback — Leibler divergence between the WEO and the a prior density is achieved at the harmonic mean, which is effective in reducing the dimensionality of the training sample. At the same time, this leads to a deterioration in the function of loss in the conditions of machine learning by precedents.
Keywords: maximum entropy principle, maximum entropy distribution, central trend, generalized average, machine learning.
@article{VSPUI_2023_19_2_a3,
     author = {A. V. Kvasnov and A. A. Baranenko and E. Yu. Butyrsky and U. P. Zaranik},
     title = {On the infuence of the cental trend on the nature of the density distribution of maximum entropy in machine learning},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {176--184},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a3/}
}
TY  - JOUR
AU  - A. V. Kvasnov
AU  - A. A. Baranenko
AU  - E. Yu. Butyrsky
AU  - U. P. Zaranik
TI  - On the infuence of the cental trend on the nature of the density distribution of maximum entropy in machine learning
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2023
SP  - 176
EP  - 184
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a3/
LA  - ru
ID  - VSPUI_2023_19_2_a3
ER  - 
%0 Journal Article
%A A. V. Kvasnov
%A A. A. Baranenko
%A E. Yu. Butyrsky
%A U. P. Zaranik
%T On the infuence of the cental trend on the nature of the density distribution of maximum entropy in machine learning
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2023
%P 176-184
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a3/
%G ru
%F VSPUI_2023_19_2_a3
A. V. Kvasnov; A. A. Baranenko; E. Yu. Butyrsky; U. P. Zaranik. On the infuence of the cental trend on the nature of the density distribution of maximum entropy in machine learning. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 2, pp. 176-184. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a3/