@article{VSPUI_2023_19_2_a2,
author = {N. A. Zhabko and V. V. Karelin and V. V. Provotorov and S. M. Sergeev},
title = {The method of penalty functions in the analysis of optimal control problems of {Navier} {\textemdash} {Stokes} evolutionary systems with a spatial variable in a network-like domain},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {162--175},
year = {2023},
volume = {19},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a2/}
}
TY - JOUR AU - N. A. Zhabko AU - V. V. Karelin AU - V. V. Provotorov AU - S. M. Sergeev TI - The method of penalty functions in the analysis of optimal control problems of Navier — Stokes evolutionary systems with a spatial variable in a network-like domain JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2023 SP - 162 EP - 175 VL - 19 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a2/ LA - en ID - VSPUI_2023_19_2_a2 ER -
%0 Journal Article %A N. A. Zhabko %A V. V. Karelin %A V. V. Provotorov %A S. M. Sergeev %T The method of penalty functions in the analysis of optimal control problems of Navier — Stokes evolutionary systems with a spatial variable in a network-like domain %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2023 %P 162-175 %V 19 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a2/ %G en %F VSPUI_2023_19_2_a2
N. A. Zhabko; V. V. Karelin; V. V. Provotorov; S. M. Sergeev. The method of penalty functions in the analysis of optimal control problems of Navier — Stokes evolutionary systems with a spatial variable in a network-like domain. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 2, pp. 162-175. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a2/
[1] Gossez J. P., “Existence of optimal controls for some nonlinear processes”, J. Optimiz. Theory and Appl., 3 (1969), 89–97 | DOI | MR | Zbl
[2] Litvinov V. G., Optimization in elliptic boundary problems as applied to mechanics, Nauka Publ, M., 1987, 368 pp. (In Russian) | MR
[3] Lions J.-L., Some methods of solving non-linear boundary value problems, Mir Publ, M., 1972, 587 pp. (In Russian) | MR
[4] Demyanov V. F., Giannessi F., Karelin V. V., “Optimal control problems via exact penalty functions”, Journal of Global Optimization, 12 (1998), 127–139 | DOI | MR
[5] Karelin V. V., “Exact fines in the problem of estimating the coordinates of a dynamical system under uncertainty”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2011, no. 4, 40–44 (In Russian) | MR
[6] Demyanov V. F., Karelin V. V., “On a minimax approach to the problem of identification of dynamic systems in the presence of uncertainty”, Advances in optimization (Lambrecht, 1991), Lecture Notes in Econom. and Math. Systems, 382, Springer Publ., Berlin, 1992, 515–517 | DOI | MR
[7] Polyakova L., Karelin V., “Exact penalty functions method for solving problems of nondifferentiable optimization”, Cybernetics and Physics. SmartFly, LLC, 3:3 (2014), 124–129 | MR
[8] Karelin V. V., Fominih A. V., “Exact penalties in the problem of constructing the optimal solution of differential inclusion”, Proceedings of the Institute of Mathematics and Mechanics URO RAS, 21, no. 3, 2015, 153–163 (In Russian) | MR
[9] Provotorov V. V., Native functions of boundary value problems on graphs and applications, Nauchnaya kniga, Voronezh, 2008, 247 pp. (In Russian)
[10] Zhabko A. P., Nurtazina K. B., Provotorov V. V., “About one approach to solving the inverse problem for parabolic equation”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:3 (2019), 323–336 | DOI | MR
[11] Baranovskii E. S., Provotorov V. V., Artemov M. A., Zhabko A. P., “Non-isothermalcreeping flows in a pipeline network: existence results”, Symmetry, 13 (2021), 1300 | DOI
[12] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, Nauka Publ, M., 1973, 407 pp. (In Russian) | MR
[13] Zhabko A. P., Provotorov V. V., Shindyapin A. I., “Optimal control of a differential-difference parabolic system with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:4 (2021), 433–448 | DOI | MR
[14] Podvalny S. L., Provotorov V. V., “Determining the starting function in the task of observing the parabolic system with distributed parameters on the graph”, Vestnik of Voronezh State Technical University, 10:6 (2014), 29–35 (In Russian)
[15] Lions J.-L., Controle optimal de sistemes gouvernes par des eqations aux derivees partielles, Mir Publ, M., 1972, 414 pp. (In Russian) | MR
[16] Kamachkin A. M., Potapov D. K., Yevstafyeva V. V., “Dynamics and synchronization in feedback cyclic structures with hysteresis oscillators”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:2 (2020), 186–199 (In Russian) | DOI | MR
[17] Aleksandrov A. Yu., Tikhonov A. A., “Stability analysis of mechanical systems with distributed delay via decomposition”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:1 (2021), 13–26 (In Russian) | DOI | MR
[18] Ekimov A. V., Zhabko A. P., Yakovlev P. V., “The stability of differential-difference equations with proportional time delay”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:3 (2020), 316–325 | DOI | MR
[19] Daugavet V. A., Yakovlev P. V., “Mean square approximation of a rectangular matrix by matrices of lower rank”, Journal of Computational Mathematics and Mathematical Physics, 29:10 (1989), 1466–1479 (In Russian) | MR