On the question of a constructive controllability criterion. Pt I. Cyclic invariant subspaces
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 2, pp. 283-299 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The rank of the Kalman's controllability matrix of linear systems depends on the bases of the invariant cyclic subspaces of the state matrix generated by the columns of the input matrix. The case of the Jordan form of the state matrix and scalar control is studied in detail. It is shown that the dimension of cyclic subspaces is determined by the index numbers of the first non-zero elements of the coordinate blocks of the columns of the input matrix. The formation of the bases of these subspaces is completely disclosed. Based on this, the basis of the space of a constructive control system is constructed.
Keywords: controllability, system structure, cyclic invariant subspaces.
@article{VSPUI_2023_19_2_a12,
     author = {E. A. Kalinina and A. M. Kamachkin and N. A. Stepenko and G. Sh. Tamasyan},
     title = {On the question of a constructive controllability criterion. {Pt~I.} {Cyclic} invariant subspaces},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {283--299},
     year = {2023},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a12/}
}
TY  - JOUR
AU  - E. A. Kalinina
AU  - A. M. Kamachkin
AU  - N. A. Stepenko
AU  - G. Sh. Tamasyan
TI  - On the question of a constructive controllability criterion. Pt I. Cyclic invariant subspaces
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2023
SP  - 283
EP  - 299
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a12/
LA  - ru
ID  - VSPUI_2023_19_2_a12
ER  - 
%0 Journal Article
%A E. A. Kalinina
%A A. M. Kamachkin
%A N. A. Stepenko
%A G. Sh. Tamasyan
%T On the question of a constructive controllability criterion. Pt I. Cyclic invariant subspaces
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2023
%P 283-299
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a12/
%G ru
%F VSPUI_2023_19_2_a12
E. A. Kalinina; A. M. Kamachkin; N. A. Stepenko; G. Sh. Tamasyan. On the question of a constructive controllability criterion. Pt I. Cyclic invariant subspaces. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 2, pp. 283-299. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a12/

[1] Zubov V. I., Theory of optimal control of a ship and other mobile objects, Sudostroenie Publ, L., 1966, 352 pp. (In Russian)

[2] Smirnov E. Ya., Stabilization of program movements, Saint Petersburg University Press, St. Petersburg, 1997, 307 pp. (In Russian)

[3] Kalman R. E., Falb P. L., Arbib M. A., Topics in mathematical system theory, Second ed., McGraw-Hill Book Company Publ, New York, 1969, 358 pp. | MR | MR | Zbl

[4] Leonov G. A., Shumafov M. M., Methods of stabilization of linear controlled systems, Saint Petersburg University Press, St. Petersburg, 2005, 421 pp. (In Russian)

[5] Kamachkin A. M., Stepenko N. A., Chitrov G. M., “On the theory of constructive construction of a linear controller”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:3 (2020), 326–344 (In Russian) | DOI | MR

[6] Kalinina E., Smol'kin Y., Uteshev A., “Robust schur stability of a polynomial matrix family”, CASC 2019, LNCS, 11661, eds. M. England, W. Koepf, T. M. Sadykov, W. M. Seiler, E. V. Vorozhtsov, Springer, Cham, 2019, 262–279 | DOI | MR | Zbl

[7] Faddeev D. K., Lectures in algebra, Nauka Publ, M., 1984, 416 pp. (In Russian) | MR

[8] Gantmacher F. R., The theory of matrices, Nauka Publ, M., 1966, 576 pp. (In Russian) | MR

[9] Faddeev D. K., Sominskii I. S., A collection of exercises in higher algebra, Nauka Publ, M., 1972, 304 pp. (In Russian) | MR

[10] Popov V. M., Hyperstability of automatic systems, Nauka Publ, M., 1970, 453 pp. (In Russian) | MR