Razumikhin approach in the generalized Myshkis problem for systems with distributed delay
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 2, pp. 148-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper gives sufficient conditions for the solvability of the generalized Myshkis problem for a system of equations with a distributed time-varying delay and a constant kernel. Conditions on the kernel which guarantee the uniform stability of the system for any admissible delay are obtained. The admissible delay in this paper is a piecewise continuous function bounded from above in magnitude and growth rate. The applicability of the obtained conditions is illustrated by two examples.
Keywords: time-delay system, stability, distributed delay, generalized Myshkis problem, Razumikhin approach.
@article{VSPUI_2023_19_2_a1,
     author = {A. V. Egorov},
     title = {Razumikhin approach in the generalized {Myshkis} problem for systems with distributed delay},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {148--161},
     year = {2023},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a1/}
}
TY  - JOUR
AU  - A. V. Egorov
TI  - Razumikhin approach in the generalized Myshkis problem for systems with distributed delay
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2023
SP  - 148
EP  - 161
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a1/
LA  - ru
ID  - VSPUI_2023_19_2_a1
ER  - 
%0 Journal Article
%A A. V. Egorov
%T Razumikhin approach in the generalized Myshkis problem for systems with distributed delay
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2023
%P 148-161
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a1/
%G ru
%F VSPUI_2023_19_2_a1
A. V. Egorov. Razumikhin approach in the generalized Myshkis problem for systems with distributed delay. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 2, pp. 148-161. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a1/

[1] Myshkis A. D., “On solutions of linear homogeneous differential equations of the first order of stable type with a retarded argument”, Mathematical Collection, 28:3 (1951), 641–658 (In Russian) | MR | Zbl

[2] Yorke J. A., “Asymptotic stability for one dimensional differential-delay equations”, Journal of Differential Equations, 7 (1970), 189–202 | DOI | MR | Zbl

[3] Yoneyama T., “The 3/2 stability theorem for one-dimensional delay-differential equations with unbounded delay”, Journal of Mathematical Analysis and Applications, 165 (1992), 133–143 | DOI | MR | Zbl

[4] Amemiya T., “On the delay-independent stability of a delayed differential equation of 1$^{\rm st}$ order”, Journal of Mathematical Analysis and Applications, 142 (1989), 13–25 | DOI | MR | Zbl

[5] Malygina V. V., “On stability of solutions of some linear differential equations with aftereffect”, Russian Mathematics, 1993, no. 5, 72–85 (In Russian) | Zbl

[6] Krisztin T., “On stability properties for one-dimensional functional differential equations”, Funkcialaj Ekvacioj, 34 (1991), 241–256 | MR | Zbl

[7] Malygina V. V., “On the exact boundaries of the stability domain of linear differential equations with distributed delay”, Russian Mathematics, 2008, no. 7, 15–23 (In Russian)

[8] Egorov A., “On the stability analysis of equations with bounded time-varying delay”, $15^{th}$ IFAC Workshop on Time Delay Systems (Sinaia, Romania, 2019), 85–90

[9] Egorov A., “The generalized Myshkis problem for a linear time-delay system with time-varying delay”, Stability and Control Processes (SCP 2020), Lecture Notes in Control and Information Sciences, eds. N. Smirnov, A. Golovkina, Springer, Cham, 2022, 223–231 | MR | Zbl

[10] Egorov A., “Robust stability analysis of time-varying delay systems”, $17^{th}$ IFAC Workshop on Time Delay Systems (Montreal, Canada, 2022), 210–215

[11] Fridman E., “An improved stabilization method for linear time-delay systems”, IEEE Transactions on Automatic Control, 47:11 (2002), 1931–1937 | DOI | MR | Zbl

[12] Wu M., He Y., She J.-H., Liu G.-P., “Delay-dependent criteria for robust stability of time-varying delay systems”, Automatica, 40 (2004), 1435–1439 | DOI | MR | Zbl

[13] Zhang C.-K., He Y., Jiang L., Wu M., Zeng H.-B., “Stability analysis of systems with time-varying delay via relaxed integral inequalities”, Systems Control Letters, 92 (2016), 52–61 | DOI | MR | Zbl

[14] Kolmanovskii V., Myshkis A., Introduction to the theory and applications of functional differential equations, Springer Science + Business Media, Dordrecht, Netherlands, 1999, 648 pp. | MR

[15] Sabatulina T. L., “On the exponential stability of a differential equation with complex coefficient and time-varying distributed delay”, Theory of management and mathematical modeling, Izhevsk, 2022, 119–121 (In Russian)