@article{VSPUI_2023_19_2_a1,
author = {A. V. Egorov},
title = {Razumikhin approach in the generalized {Myshkis} problem for systems with distributed delay},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {148--161},
year = {2023},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a1/}
}
TY - JOUR AU - A. V. Egorov TI - Razumikhin approach in the generalized Myshkis problem for systems with distributed delay JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2023 SP - 148 EP - 161 VL - 19 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a1/ LA - ru ID - VSPUI_2023_19_2_a1 ER -
%0 Journal Article %A A. V. Egorov %T Razumikhin approach in the generalized Myshkis problem for systems with distributed delay %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2023 %P 148-161 %V 19 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a1/ %G ru %F VSPUI_2023_19_2_a1
A. V. Egorov. Razumikhin approach in the generalized Myshkis problem for systems with distributed delay. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 2, pp. 148-161. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_2_a1/
[1] Myshkis A. D., “On solutions of linear homogeneous differential equations of the first order of stable type with a retarded argument”, Mathematical Collection, 28:3 (1951), 641–658 (In Russian) | MR | Zbl
[2] Yorke J. A., “Asymptotic stability for one dimensional differential-delay equations”, Journal of Differential Equations, 7 (1970), 189–202 | DOI | MR | Zbl
[3] Yoneyama T., “The 3/2 stability theorem for one-dimensional delay-differential equations with unbounded delay”, Journal of Mathematical Analysis and Applications, 165 (1992), 133–143 | DOI | MR | Zbl
[4] Amemiya T., “On the delay-independent stability of a delayed differential equation of 1$^{\rm st}$ order”, Journal of Mathematical Analysis and Applications, 142 (1989), 13–25 | DOI | MR | Zbl
[5] Malygina V. V., “On stability of solutions of some linear differential equations with aftereffect”, Russian Mathematics, 1993, no. 5, 72–85 (In Russian) | Zbl
[6] Krisztin T., “On stability properties for one-dimensional functional differential equations”, Funkcialaj Ekvacioj, 34 (1991), 241–256 | MR | Zbl
[7] Malygina V. V., “On the exact boundaries of the stability domain of linear differential equations with distributed delay”, Russian Mathematics, 2008, no. 7, 15–23 (In Russian)
[8] Egorov A., “On the stability analysis of equations with bounded time-varying delay”, $15^{th}$ IFAC Workshop on Time Delay Systems (Sinaia, Romania, 2019), 85–90
[9] Egorov A., “The generalized Myshkis problem for a linear time-delay system with time-varying delay”, Stability and Control Processes (SCP 2020), Lecture Notes in Control and Information Sciences, eds. N. Smirnov, A. Golovkina, Springer, Cham, 2022, 223–231 | MR | Zbl
[10] Egorov A., “Robust stability analysis of time-varying delay systems”, $17^{th}$ IFAC Workshop on Time Delay Systems (Montreal, Canada, 2022), 210–215
[11] Fridman E., “An improved stabilization method for linear time-delay systems”, IEEE Transactions on Automatic Control, 47:11 (2002), 1931–1937 | DOI | MR | Zbl
[12] Wu M., He Y., She J.-H., Liu G.-P., “Delay-dependent criteria for robust stability of time-varying delay systems”, Automatica, 40 (2004), 1435–1439 | DOI | MR | Zbl
[13] Zhang C.-K., He Y., Jiang L., Wu M., Zeng H.-B., “Stability analysis of systems with time-varying delay via relaxed integral inequalities”, Systems Control Letters, 92 (2016), 52–61 | DOI | MR | Zbl
[14] Kolmanovskii V., Myshkis A., Introduction to the theory and applications of functional differential equations, Springer Science + Business Media, Dordrecht, Netherlands, 1999, 648 pp. | MR
[15] Sabatulina T. L., “On the exponential stability of a differential equation with complex coefficient and time-varying distributed delay”, Theory of management and mathematical modeling, Izhevsk, 2022, 119–121 (In Russian)