Method for solving an optimal control problem in the Mayer form with a quasidifferentiable functional in the presence of phase constraints
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 1, pp. 120-134
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers the problem of optimal control of an object described by a system of ordinary differential equations with a continuously differentiable right-hand side and with a nonsmooth (but only a quasidifferentiable) quality functional. The problem is in the Mayer form with either free or partially fixed right end. Piecewise-continuous and bounded controls are supposed to be admissible if they lie in some parallelepiped at any moment of time. The phase coordinates and controls are also subject to mixed pointwise constraints. Phase constraints are taken into account by introducing new variables with known boundary conditions into the system. The standard discretization of the original system and the parametrization of the control are carried out, theorems are given on the convergence of the solution of the discrete system obtained to the desired solution of the continuous problem. Further, in order to study the resulting discrete system, the apparatus of quasidifferential calculus is used and the method of the quasidifferential descent is applied. Examples illustrating the operation of the algorithm are given.
Keywords: optimal control, Mayer problem, nonsmooth optimization, quasidifferential, phase constraints.
@article{VSPUI_2023_19_1_a9,
     author = {A. V. Fominykh and V. V. Karelin and L. N. Polyakova},
     title = {Method for solving an optimal control problem in the {Mayer} form with a quasidifferentiable functional in the presence of phase constraints},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {120--134},
     year = {2023},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a9/}
}
TY  - JOUR
AU  - A. V. Fominykh
AU  - V. V. Karelin
AU  - L. N. Polyakova
TI  - Method for solving an optimal control problem in the Mayer form with a quasidifferentiable functional in the presence of phase constraints
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2023
SP  - 120
EP  - 134
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a9/
LA  - ru
ID  - VSPUI_2023_19_1_a9
ER  - 
%0 Journal Article
%A A. V. Fominykh
%A V. V. Karelin
%A L. N. Polyakova
%T Method for solving an optimal control problem in the Mayer form with a quasidifferentiable functional in the presence of phase constraints
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2023
%P 120-134
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a9/
%G ru
%F VSPUI_2023_19_1_a9
A. V. Fominykh; V. V. Karelin; L. N. Polyakova. Method for solving an optimal control problem in the Mayer form with a quasidifferentiable functional in the presence of phase constraints. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 1, pp. 120-134. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a9/

[1] Jiang C., Lin Q., Yu C., Teo K. L., “An exact penalty method for free terminal time optimal control problem with continuous inequality constraints”, Journal of Optim. Theory Appl, 154 (2012), 30–53 | DOI | MR | Zbl

[2] Moiseev N. N., Elements of the optimal systems theory, Nauka Publ, M., 1976, 526 pp. (In Russian) | MR

[3] Loxton R. C., Teo K. L., Rehbock V., Yiu K. F. C., “Optimal control problems with a continuous inequality constraint on the state and the control”, Automatica, 45:10 (2009), 2250–2257 | DOI | MR | Zbl

[4] Rosen J. B., “Iterative solution of nonlinear optimal control”, J. SIAM Control, 4:1 (1966), 223–244 | DOI | MR | Zbl

[5] Bryson A. E., Denham W. F., “Optimal programming problems with inequality constraints. II: Solution by steepest-ascent”, AIAA Journal, 2:1 (1964), 25–34 | DOI | MR

[6] Lasdon L. S., Waren A. D., Rice R. K., “An interior penalty method for inequality constrained optimal control problems”, IEEE Transactions on Automatic Control, 12:4 (1967), 388–395 | DOI | MR

[7] Miele A., Cloutier J. R., Mohanty B. P., Wu A. K., “Sequential conjugate gradient-restoration algorithm for optimal control problems with nondifferential constraints. Pt I”, International Journal of Control, 2:2 (1979), 189–211 | DOI | MR

[8] Berkovitz L. D., “Variational methods in problems of control and programming”, Journal of Mathematical Analysis and Applications, 3 (1961), 145–169 | DOI | MR | Zbl

[9] Gorelik V. A., Tarakanov A. F., “Penalty method and maximum principle for nonsmooth variable-structure control problems”, Cybernetics and Systems Analysis, 28:3 (1992), 432–437 | DOI | MR | Zbl

[10] Morzhin O. V., “On approximation of the subdifferential of the nonsmooth penalty functional in the problems of optimal control”, Automation and Remote Control, 70 (2009), 761–771 | DOI | MR | Zbl

[11] Mayne D. Q., Smith S., “Exact penalty algorithm for optimal control problems with control and terminal constraints”, International Journal of Control, 48:1 (1988), 257–271 | DOI | MR | Zbl

[12] Noori Skandari M. H., Kamyad A. V., Effati S., “Smoothing approach for a class of nonsmooth optimal control problems”, Applied Mathematical Modelling, 40:2 (2015), 886–903 | DOI | MR

[13] Demyanov V. F., Rubinov A. M., Basics of nonsmooth analysis and quasidifferential calculus, Nauka Publ., M., 1990, 432 pp. (In Russian)

[14] Teo K. L., Goh C. J., Wong K. H., A unified computational approach to optimal control problems, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific and Technical, New York, 1991, 329 pp. | MR | Zbl

[15] Jazwinski A. H., “Optimal trajectories and linear control of nonlinear systems”, AIAA Journal, 2:8 (1964), 1371–1379 | DOI | MR | Zbl

[16] Fominyh A. V., “The subdifferential descent method in a nonsmooth variational problem”, Optimization Letters, 2022 (to appear) | DOI | MR

[17] Fominyh A. V., Karelin V. V., Polyakova L. N., Myshkov S. K., Tregubov V. P., “The codifferential descent method in the problem of finding the global minimum of a piecewise affine objective functional in linear control systems”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:1 (2021), 47–58 (In Russian) | DOI | MR

[18] Fominyh A. V., “The quasidifferential descent method in a control problem with nonsmooth objective functional”, Optimization Letters, 15:8 (2021), 2773–2792 | DOI | MR | Zbl

[19] Fominyh A. V., “Open-loop control of a plant described by a system with nonsmooth right-hand side”, Computational Mathematics and Mathematical Physics, 59:10 (2019), 1639–1648 | DOI | MR | Zbl

[20] Filippov A. F., “On certain questions in the theory of optimal control”, J. SIAM Control Ser. A 1, 1:1 (1962), 76–84 | MR | Zbl

[21] Vasil'ev F. P., Optimization methods, Faktorial Press, M., 2002, 824 pp. (In Russian)

[22] Peressini A. L., Sullivan F. E., Uhl J. J., The mathematics of nonlinear programming, Springer, New York, 1988, 276 pp. | MR | Zbl

[23] Dolgopolik M. V., “A unifying theory of exactness of linear penalty functions”, Optimization, 65:6 (2015), 1167–1202 | DOI | MR

[24] Demyanov V.F., Extremum conditions and variational calculus, Vysshaya shkola Publ., M., 2005, 335 pp. (In Russian)

[25] Byrd R. H., Nocedal J., Waltz R. A., “Steering exact penalty methods for nonlinear programming”, Optimization Methods and Software, 23:2 (2008), 197–213 | DOI | MR | Zbl

[26] Wolfe P., “The simplex method for quadratic programming”, Econom, 27 (1959), 382–398 | DOI | MR | Zbl

[27] Vasil'ev L. V., Demyanov V. F., Nondifferentiable optimization, Nauka Publ, M., 1981, 384 pp. (In Russian) | MR

[28] Demyanov V. F., Malozemov V. N., Introduction to minimax, Nauka Publ., M., 1972, 368 pp. (In Russian) | MR

[29] Dolgopolik M. V., “A convergence analysis of the method of codifferential descent”, Computational Optimization and Applications, 71:3 (2018), 879–913 | DOI | MR | Zbl

[30] Krylov I.A., “Numerical solution of the problem of the optimal stabilization of an artificial satellite”, USSR Comput. Math. Math. Phys., 8:1 (1968), 203–208 (In Russian)