Difference dynamic input — output models
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 1, pp. 51-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, the object of study is the economy of the region. To describe it, a regular method for constructing difference input — output dynamic models is proposed. This approach involves modeling not only the sphere of production, but also the sphere of consumption. To do this, the vector of phase variables includes the gross domestic product. The variability of the model consists in the ability to take into account various macroeconomic parameters depending on the ultimate goals of analysis and control of macroeconomic trends. It is shown that the dynamics of the economy with direct investment in various sectors of the economy is described by linear controlled difference systems. If there is a need to take into account other macroeconomic parameters that increase the sensitivity of the model to managerial influences, then this leads to nonlinear difference systems of various types. In the final part of the article, a scenario approach for the development of investment projects is described. This approach is based on the principles of constructing program controls and stabilizing the corresponding program movements of a controlled difference system.
Keywords: dynamic input — output model, difference equations, scenario approach, program controls, stabilization.
@article{VSPUI_2023_19_1_a4,
     author = {N. V. Smirnov and T. E. Smirnova and M. A. Smirnova and M. N. Smirnov},
     title = {Difference dynamic input {\textemdash} output models},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {51--64},
     year = {2023},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a4/}
}
TY  - JOUR
AU  - N. V. Smirnov
AU  - T. E. Smirnova
AU  - M. A. Smirnova
AU  - M. N. Smirnov
TI  - Difference dynamic input — output models
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2023
SP  - 51
EP  - 64
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a4/
LA  - ru
ID  - VSPUI_2023_19_1_a4
ER  - 
%0 Journal Article
%A N. V. Smirnov
%A T. E. Smirnova
%A M. A. Smirnova
%A M. N. Smirnov
%T Difference dynamic input — output models
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2023
%P 51-64
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a4/
%G ru
%F VSPUI_2023_19_1_a4
N. V. Smirnov; T. E. Smirnova; M. A. Smirnova; M. N. Smirnov. Difference dynamic input — output models. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 1, pp. 51-64. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a4/

[1] Leontief W. W., Input — output economics, Oxford University Press, New York–Oxford, 1986, 448 pp.

[2] Kantorovich L. V., Mathematical methods of organizing and planning production, Lenigrad University Press, L., 1939, 68 pp. (In Russian)

[3] Veduta N. I., Socially efficient economy, Russian Academy of Economics Press, M., 1999, 254 pp. (In Russian)

[4] Granberg A. G., Dynamical models of the economy, Economics Publ, M., 1985, 240 pp. (In Russian)

[5] Efimov V. A., Methodology of economy support for demographics policies of stable development, North-West Academy of Civil Service Publ, St. Petersburg, 2007, 184 pp. (In Russian)

[6] Velichko M. V., Efimov V. A., Zaznobin V. M., Economics of innovative development. Control foundations of economic theory, Kontseptual Publ, M., 2017, 584 pp. (In Russian) | MR

[7] Karganov S. A., On the fallacy of using the economic and mathematical model of W. Leontiev and intersectoral balances “input — output” in national economic planning, Administrative and management portal (In Russian) (accessed: January 18, 2023)

[8] International Input — Output Association (IIOA), The official website of the IIOA (accessed: January 18, 2023)

[9] World Input — Output Database (WIOD), The official website of the WIOD (accessed: January 18, 2023)

[10] The Organisation for Economic Co-operation and Development (OECD), The official website of the OECD, (accessed: January 18, 2023) http://www.oecd.org/

[11] Rosstat. The official website of the Rosstat, (accessed: January 18, 2023) http://www.gks.ru/

[12] Fedoseev V. V., Garmash A. N., Daiitbegov D. M., Orlova I. V., Polovnikov V. A., Economic-mathematical methods and applied models, ed. V. V. Fedoseev, IUNITI Publ, M., 1999, 391 pp. (In Russian)

[13] Tarasevich L. S., Grebennikov P. I., Leusskii A.. I., Macroeconomics, The textbook, Vysshaya shkola Publ, M., 2006, 654 pp. (In Russian)

[14] N. V. Smirnov (ed.), Intersectoral balance: analysis of dynamics and control of macroeconomic trends, The textbook for universities, Lan' Press, St. Petersburg, 2021, 180 pp. (In Russian)

[15] Thijs ten Raa (ed.), Handbook of Input — Output Analysis, Edward Elgar Publishing Inc., Massachusetts, 2017, 512 pp.

[16] Zubov V. I., Lectures on control theory, Lan' Publ, St. Petersburg, 2009, 496 pp. (In Russian)

[17] Andreev Yu. N., Control of finite linear objects, Nauka Publ, M., 1976, 424 pp. (In Russian)

[18] Aleksandrov A. Yu., Zhabko A. P., Platonov A. V., Stability of motions of discrete dynamical systems, Publishing House Fedorova G. V., St. Petersburg, 2015, 154 pp. (In Russian)

[19] Smirnov N. V., Smirnova T. Ye., Tamasyan G. Sh., Stabilization of program motions at full and incomplete feedback, Lan' Publ, St. Petersburg, 2016, 128 pp. (In Russian)

[20] Smirnov N. V., Smirnov A. N., Smirnova M. A., Smirnov M. N., “Combined control synthesis algorithm”, Constructive Nonsmooth Analysis and Related Topics, CNSA 2017, dedicated to the memory of V. F. Demyanov, Proceedings (St. Petersburg, 2017), 2017, 194–196

[21] Smirnova M. A., Smirnov M. N., Smirnova T. E., Smirnov N. V., “Multipurpose control laws in motion control systems”, Information (Japan), 20:4 (2017), 2265–2272 | MR

[22] Smirnov M. N., Smirnova M. A., Smirnova T. E., Smirnov N. V., “The problem of synthesis the control laws with uncertainties in external disturbances”, Lecture Notes in Engineering and Computer Science, 2227, 2017, 276–279 | MR

[23] Smirnov M. N., Smirnova M. A., Smirnova T. E., Smirnov N. V., “The issues of multipurpose control laws construction”, Lecture Notes in Engineering and Computer Science, 2227, 2017, 194–196

[24] Smirnova M. A., Smirnov M. N., “Multipurpose control laws in trajectory tracking problem”, International Journal of Applied Engineering Research, 11:22 (2016), 11104–11109

[25] Smirnova M. A., Smirnov M. N., Smirnov N. V., “Multipurpose robotic arm control system”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 18:4 (2022), 620–629 (In Russian) | DOI | MR

[26] Zubov V. I., “Synthesis of multiprogram stable controls”, Reports of Sciences Academy of the USSR, 318:2 (1991), 274–277 (In Russian) | Zbl

[27] Smirnov N. V., “Problems of multiprogram control and stabilization in various classes of dynamical systems”, Proceedings of the Srednevolzhsk Mathematical Society, 7:1 (2005), 192–201 (In Russian) | Zbl

[28] Smirnov N. V., Smirnova T. E., Shakhov Ya. A., “Stabilization of a given set of equilibrium states of nonlinear systems”, Izvestiya RAN. Theory and control systems, 2012, no. 2, 3–9 (In Russian) | MR | Zbl

[29] Smirnov N. V., Smirnova T. E., Smirnov M. N., Smirnova M. A., “Multiprogram digital control”, Proceedings of the International Multiconference of Engineers and Computer Scientists, IMECS 2014 (March 12–14, Hong Kong, 2014), v. 1, 268–271