The maximum entropy principle in search theory
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 1, pp. 27-42

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the relationship between search theory and information theory. The traditional problem of search theory is to develop a search plan for a physical object in the sea or on land. The search plan has to develop the distribution of available search resources in such a way that the probability of detection the search object is to be maximum. The optimal solution is traditionally considered as so-called "uniformly optimal search plan’’, which provides a uniform distribution of the posterior probability of the location of the object as the search is conducted. At the same time, optimality simultaneously according to the criteria of maximum detection probability and equality of a posteriori probability is possible only for the exponential detection function, which is used most often in search theory. For other kinds of detection functions, the optimal solutions according to the specified criteria do not match. In this paper, the approach to this problem is considered on the basis of the maximum entropy principle. For a situation of discrete distribution, it is shown that, within the framework of information theory, the search problem has a simpler solution that does not depend on the kind of the detection function.
Keywords: information theory, search theory, uniformly optimal search plan, detection function, maximum entropy principle.
@article{VSPUI_2023_19_1_a2,
     author = {A. N. Prokaev},
     title = {The maximum entropy principle in search theory},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {27--42},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a2/}
}
TY  - JOUR
AU  - A. N. Prokaev
TI  - The maximum entropy principle in search theory
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2023
SP  - 27
EP  - 42
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a2/
LA  - ru
ID  - VSPUI_2023_19_1_a2
ER  - 
%0 Journal Article
%A A. N. Prokaev
%T The maximum entropy principle in search theory
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2023
%P 27-42
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a2/
%G ru
%F VSPUI_2023_19_1_a2
A. N. Prokaev. The maximum entropy principle in search theory. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 1, pp. 27-42. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a2/