Dynamic network model of production and investment
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 1, pp. 10-26
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper studies a dynamic network game that models the competitive behavior of firms in a market. It is assumed that firms, under the condition of simultaneous and independent choice of their actions, implement the behavior that determines their production and investment behavior in each period. The production behavior of the firm reflects the ongoing quantities that it should produce and supply to the market. The investment behavior specifies the ongoing amounts of investment that the firm allocates to the modernization of its production technology in order to prevent it from becoming obsolete. Next, the unit cost is assumed to depend on the firm's investment and the investment of its competitors, which are determined by an exogenous network. Two types of Nash equilibria are characterized: open-loop and feedback. Finally, we analyze the impact of the network and related model parameters on firms' behavior, profits, and competitive advantage.
Keywords: competition, investment, dynamic game, network, Nash equilibrium.
@article{VSPUI_2023_19_1_a1,
     author = {V. A. Kochevadov and A. A. Sedakov},
     title = {Dynamic network model of production and investment},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {10--26},
     year = {2023},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a1/}
}
TY  - JOUR
AU  - V. A. Kochevadov
AU  - A. A. Sedakov
TI  - Dynamic network model of production and investment
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2023
SP  - 10
EP  - 26
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a1/
LA  - ru
ID  - VSPUI_2023_19_1_a1
ER  - 
%0 Journal Article
%A V. A. Kochevadov
%A A. A. Sedakov
%T Dynamic network model of production and investment
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2023
%P 10-26
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a1/
%G ru
%F VSPUI_2023_19_1_a1
V. A. Kochevadov; A. A. Sedakov. Dynamic network model of production and investment. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 1, pp. 10-26. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a1/

[1] Jackson M. O., Social and economic networks, Princeton University Press, Princeton, 2008, 520 pp. | MR | Zbl

[2] Galeotti A., Goyal S., Jackson M. O., Vega-Redondo F., Yariv L., “Network games”, Review of Economic Studies, 77 (2010), 218–244 | DOI | MR | Zbl

[3] Jackson M. O., Zenou Y., “Games on networks”, Handbook of game theory with economic applications, v. 4, eds. P. Young, S. Zamir, Elsevier Science, Amsterdam, 2015, 95–164 | DOI | MR

[4] Novikov D. A., “Games and networks”, Mathematical game theory and applications, 2:1 (2010), 107–124 (In Russian) | MR | Zbl

[5] Goyal S., Moraga-Gonzailez J. L., “R networks”, The RAND Journal of Economics, 32:4 (2001), 686–707 | DOI

[6] Zhao J., Ni J., “A dynamic analysis of corporate investments and emission tax policy in an oligopoly market with network externality”, Operations Research Letters, 49 (2020), 81–83 | DOI | MR

[7] Cellini R., Lambertini L., “Dynamic R with spillovers: Competition vs cooperation”, Journal of Economic Dynamics Control, 33 (2009), 568–582 | DOI | MR | Zbl

[8] Ballester C., Calvó-Armengol A., Zenou Y., “Who's who in networks. Wanted: The key player”, Econometrica, 74:5 (2006), 1403–1417 | DOI | MR | Zbl

[9] Goyal S., Joshi S., “Networks of collaboration in oligopoly”, Games and Economic Behavior, 43:1 (2003), 57–85 | DOI | MR | Zbl

[10] Bulow J., Geanakoplos J., Klemperer P., “Multimarket oligopoly: strategic substitutes and complements”, Journal of Political Economy, 93:3 (1985), 488–511 | DOI

[11] Bramoullé Y., Kranton R., “Public goods in networks”, Journal of Economic Theory, 135 (2007), 478–494 | DOI | MR | Zbl

[12] Azariadis C., Chen B.-L., Lu C.-H., Wang Y.-C., “A two-sector model of endogenous growth with leisure externalities”, Journal of Economic Theory, 148 (2013), 843–857 | DOI | MR | Zbl

[13] Martemyanov Y. P., Matveenko V. D., “On the dependence of the growth rate on the elasticity of substitution in a network”, International Journal of Process Management and Benchmarking, 4 (2014), 475–492 | DOI

[14] Milgrom P., Roberts J., “The economics of modern manufacturing: technology, strategy, and organization”, American Economic Review, 80 (1990), 511–518

[15] Milgrom P., Roberts J., “Complementarities and systems: understanding Japanese economic organization”, Estudios Económicos, 9 (1994), 3–42

[16] Topkis D. M., Supermodularity and complementarity, Princeton University Press, Princeton, 1998, 288 pp. | MR

[17] Cournot A. A., Recherches sur les principes mathematiques de la theorie des richesses par Augustin Cournot, Hachette, Paris, 1838, 199 pp.

[18] Başar T., Olsder G. J., Dynamic noncooperative game theory, Academic Press, London–New York, 1995, 511 pp. | MR | Zbl

[19] Petrosyan L. A., Zenkevich N. A., Shevkoplyas E. V., Game theory, BKhV-Petersburg Publ, St. Petersburg, 2012, 432 pp. (In Russian)

[20] Mazalov V. V., Mathematical game theory and applications, Lan' Publ, M., 2017, 448 pp. (In Russian)