The stability of differential-difference systems with linearly increasing delay. II. Systems with additive right side
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 1, pp. 4-9
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers an uncontrolled system of differential-difference equations with a homogeneous additive right side and linearly increasing delay. Sufficient conditions for asymptotic stability are known for a number of special cases of such systems. Razumikhin's theorem on the asymptotic stability of homogeneous systems with proportional delay is formulated. Sufficient conditions for asymptotic stability are obtained basing on the asymptotic stability of the initial system without delay and constructing the Lyapunov function.
Keywords: system of linear differential-differencel equations, linearly increasing, time delay, asymptotic stability, homogeneous system.
@article{VSPUI_2023_19_1_a0,
     author = {A. V. Ekimov and A. P. Zhabko and P. V. Yakovlev},
     title = {The stability of differential-difference systems with linearly increasing delay. {II.~Systems} with additive right side},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {4--9},
     year = {2023},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a0/}
}
TY  - JOUR
AU  - A. V. Ekimov
AU  - A. P. Zhabko
AU  - P. V. Yakovlev
TI  - The stability of differential-difference systems with linearly increasing delay. II. Systems with additive right side
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2023
SP  - 4
EP  - 9
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a0/
LA  - ru
ID  - VSPUI_2023_19_1_a0
ER  - 
%0 Journal Article
%A A. V. Ekimov
%A A. P. Zhabko
%A P. V. Yakovlev
%T The stability of differential-difference systems with linearly increasing delay. II. Systems with additive right side
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2023
%P 4-9
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a0/
%G ru
%F VSPUI_2023_19_1_a0
A. V. Ekimov; A. P. Zhabko; P. V. Yakovlev. The stability of differential-difference systems with linearly increasing delay. II. Systems with additive right side. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 1, pp. 4-9. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a0/

[1] Zhabko A. P., Chizhova O. N., “Stability analysis of homogeneous differential-difference equation with linear delay”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Sciences. Control Processes, 2015, no. 3, 105–115 (In Russian) | MR

[2] Ekimov A. V., Chizhova O. N., Zaranik U. P., “Stability of homogeneous nonstationary systems of differential-difference equations with linearly time delay”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 15:4 (2019), 415–424 (In Russian) | DOI | DOI | MR

[3] Ekimov A. V., Zhabko A. P., Yakovlev P. V., “The stability of differential-difference equations with proportional time delay. I. Linear controlling systems”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:3 (2020), 316–325 (In Russian) | DOI | MR

[4] Alexandrova I. V., Zhabko A. P., “At the junction of Lyapunov — Krasovskii and Razumikhin approaches”, IFACPapersOnLine, 51:14 (2018), 147–152 | MR

[5] Rosier L., “Homogeneous Lyapunov function for homogeneous continuous vector field”, Systems Control Letters, 19 (1992), 467–473 | DOI | MR | Zbl

[6] Alexandrov A. Y., Zhabko A. P., Pechersky B. S., “Functionals of full type for several classes of homogeneous differential-defference systems”, Proceedings of 8$^{th}$ International conference “Modern Methods in Applied Mathematics, Control Theory and Computer Technology”, Nauchnaya kniga Publ, Voronezh, 2015, 5–8 (In Russian)

[7] Alexandrov A. Y., Zhabko A. P., “On asymptotic stability of solution of non linear systems with time delay”, Siberian Mathematical Journal, 53:3 (2012), 393–403 (In Russian) | MR | Zbl

[8] Zhabko A., Chizhova O., Zaranik U., “Stability analysis of the linear time delay systems with linearly increasing delay”, Cybernetics and Physics, 5:2 (2016), 67–72 | MR

[9] Zubov V. I., Stobility of motion, Vysshaya shkola Publ, M., 1984, 232 pp. (In Russian) | MR