@article{VSPUI_2023_19_1_a0,
author = {A. V. Ekimov and A. P. Zhabko and P. V. Yakovlev},
title = {The stability of differential-difference systems with linearly increasing delay. {II.~Systems} with additive right side},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {4--9},
year = {2023},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a0/}
}
TY - JOUR AU - A. V. Ekimov AU - A. P. Zhabko AU - P. V. Yakovlev TI - The stability of differential-difference systems with linearly increasing delay. II. Systems with additive right side JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2023 SP - 4 EP - 9 VL - 19 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a0/ LA - ru ID - VSPUI_2023_19_1_a0 ER -
%0 Journal Article %A A. V. Ekimov %A A. P. Zhabko %A P. V. Yakovlev %T The stability of differential-difference systems with linearly increasing delay. II. Systems with additive right side %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2023 %P 4-9 %V 19 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a0/ %G ru %F VSPUI_2023_19_1_a0
A. V. Ekimov; A. P. Zhabko; P. V. Yakovlev. The stability of differential-difference systems with linearly increasing delay. II. Systems with additive right side. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 1, pp. 4-9. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_1_a0/
[1] Zhabko A. P., Chizhova O. N., “Stability analysis of homogeneous differential-difference equation with linear delay”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Sciences. Control Processes, 2015, no. 3, 105–115 (In Russian) | MR
[2] Ekimov A. V., Chizhova O. N., Zaranik U. P., “Stability of homogeneous nonstationary systems of differential-difference equations with linearly time delay”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 15:4 (2019), 415–424 (In Russian) | DOI | DOI | MR
[3] Ekimov A. V., Zhabko A. P., Yakovlev P. V., “The stability of differential-difference equations with proportional time delay. I. Linear controlling systems”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:3 (2020), 316–325 (In Russian) | DOI | MR
[4] Alexandrova I. V., Zhabko A. P., “At the junction of Lyapunov — Krasovskii and Razumikhin approaches”, IFACPapersOnLine, 51:14 (2018), 147–152 | MR
[5] Rosier L., “Homogeneous Lyapunov function for homogeneous continuous vector field”, Systems Control Letters, 19 (1992), 467–473 | DOI | MR | Zbl
[6] Alexandrov A. Y., Zhabko A. P., Pechersky B. S., “Functionals of full type for several classes of homogeneous differential-defference systems”, Proceedings of 8$^{th}$ International conference “Modern Methods in Applied Mathematics, Control Theory and Computer Technology”, Nauchnaya kniga Publ, Voronezh, 2015, 5–8 (In Russian)
[7] Alexandrov A. Y., Zhabko A. P., “On asymptotic stability of solution of non linear systems with time delay”, Siberian Mathematical Journal, 53:3 (2012), 393–403 (In Russian) | MR | Zbl
[8] Zhabko A., Chizhova O., Zaranik U., “Stability analysis of the linear time delay systems with linearly increasing delay”, Cybernetics and Physics, 5:2 (2016), 67–72 | MR
[9] Zubov V. I., Stobility of motion, Vysshaya shkola Publ, M., 1984, 232 pp. (In Russian) | MR