Mots-clés : diffusion, Fourier's, turbulence.
@article{VSPUI_2022_18_4_a6,
author = {V. A. Pavlovsky},
title = {Power generalization of the linear constitutive equations of heat and mass transfer and the variants of writing the equations of momentum transfer, heat and diffusion arising from them},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {527--534},
year = {2022},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a6/}
}
TY - JOUR AU - V. A. Pavlovsky TI - Power generalization of the linear constitutive equations of heat and mass transfer and the variants of writing the equations of momentum transfer, heat and diffusion arising from them JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2022 SP - 527 EP - 534 VL - 18 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a6/ LA - ru ID - VSPUI_2022_18_4_a6 ER -
%0 Journal Article %A V. A. Pavlovsky %T Power generalization of the linear constitutive equations of heat and mass transfer and the variants of writing the equations of momentum transfer, heat and diffusion arising from them %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2022 %P 527-534 %V 18 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a6/ %G ru %F VSPUI_2022_18_4_a6
V. A. Pavlovsky. Power generalization of the linear constitutive equations of heat and mass transfer and the variants of writing the equations of momentum transfer, heat and diffusion arising from them. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 527-534. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a6/
[1] Kutateladze S. S., Fundamentals of the theory of heat transfer, Atomizdat Publ, M., 1979, 234 pp. (In Russian)
[2] Pavlovsky V. A., “Power-law generalization of Newton's formula for shear stress in a liquid in the form of a tensor rheological relation”, Vestnik of Saint Petersburg University. Mathematics, 55:2 (2022), 229–234 | DOI | MR
[3] Pavlovsky V. A., Kabrits S. A., “Calculation of turbulent boundarylayer of a flat plate”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 17:4 (2021), 370–380 (In Russian) | DOI | MR
[4] Nikushchenko D. V., Pavlovsky V. A., Nikushchenko E. A., “Fluid flow development in a pipe as a demonstration of a sequential 402 hange in its rheological properties”, Applied Sciences, 12:6 (2022) | DOI
[5] Pavlovsky V. A., “Power-law generalization of the Fourier formula for heat conduction and variants arising from it for writing the energy equation”, Marine intelligent technologies, 2:2 (4) (2022), 133–138 (In Russian) | DOI
[6] Isachenko V. P., Osipova V. A., Sukomel A. S., Heat transfer, Energoizdat Publ, M., 1981, 416 pp. (In Russian)
[7] Popov P. V., Diffusion, Moscow Institute of Physics and Technology Publ, M., 2016, 94 pp. (In Russian)
[8] Pavlovsky V. A., Nikushhenko D. V., Computational fluid dynamics. Theoretical fundamentals, Lan' Publ, St Petersburg, 2018, 368 pp. (In Russian)