The method of successive approximations for constructing a model of dynamic polynomial regression
    
    
  
  
  
      
      
      
        
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 487-500
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Predicting the behavior of a certain process in time is an important task that arises in many applied areas, and information about the system that generated this process can either be completely absent or be partially limited. The only available knowledge is the accumulated data on past states and process parameters. Such a task can be successfully solved using machine learning methods, but when it comes to modeling physical experiments or areas where the ability of a model to generalize and interpretability of predictions are important, then the most machine learning methods do not fully satisfy these requirements. The forecasting problem is solved by building a dynamic polynomial regression model, and a method for finding its coefficients is proposed, based on the connection with dynamic systems. Thus, the constructed model corresponds to a deterministic process, potentially described by differential equations, and the relationship between its parameters can be expressed in an analytical form. As an illustration of the applicability of the proposed approach to solving forecasting problems, we consider a synthetic data set generated as a numerical solution of a system of differential equations that describes the Van der Pol oscillator.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
polynomial regression
Keywords: dynamic systems, Taylor map.
                    
                  
                
                
                Keywords: dynamic systems, Taylor map.
@article{VSPUI_2022_18_4_a3,
     author = {A. G. Golovkina and V. A. Kozynchenko and I. S. Klimenko},
     title = {The method of successive approximations for constructing a model of dynamic polynomial regression},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {487--500},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a3/}
}
                      
                      
                    TY - JOUR AU - A. G. Golovkina AU - V. A. Kozynchenko AU - I. S. Klimenko TI - The method of successive approximations for constructing a model of dynamic polynomial regression JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2022 SP - 487 EP - 500 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a3/ LA - ru ID - VSPUI_2022_18_4_a3 ER -
%0 Journal Article %A A. G. Golovkina %A V. A. Kozynchenko %A I. S. Klimenko %T The method of successive approximations for constructing a model of dynamic polynomial regression %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2022 %P 487-500 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a3/ %G ru %F VSPUI_2022_18_4_a3
A. G. Golovkina; V. A. Kozynchenko; I. S. Klimenko. The method of successive approximations for constructing a model of dynamic polynomial regression. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 487-500. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a3/
