The method of successive approximations for constructing a model of dynamic polynomial regression
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 487-500

Voir la notice de l'article provenant de la source Math-Net.Ru

Predicting the behavior of a certain process in time is an important task that arises in many applied areas, and information about the system that generated this process can either be completely absent or be partially limited. The only available knowledge is the accumulated data on past states and process parameters. Such a task can be successfully solved using machine learning methods, but when it comes to modeling physical experiments or areas where the ability of a model to generalize and interpretability of predictions are important, then the most machine learning methods do not fully satisfy these requirements. The forecasting problem is solved by building a dynamic polynomial regression model, and a method for finding its coefficients is proposed, based on the connection with dynamic systems. Thus, the constructed model corresponds to a deterministic process, potentially described by differential equations, and the relationship between its parameters can be expressed in an analytical form. As an illustration of the applicability of the proposed approach to solving forecasting problems, we consider a synthetic data set generated as a numerical solution of a system of differential equations that describes the Van der Pol oscillator.
Mots-clés : polynomial regression
Keywords: dynamic systems, Taylor map.
@article{VSPUI_2022_18_4_a3,
     author = {A. G. Golovkina and V. A. Kozynchenko and I. S. Klimenko},
     title = {The method of successive approximations for constructing a model of dynamic polynomial regression},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {487--500},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a3/}
}
TY  - JOUR
AU  - A. G. Golovkina
AU  - V. A. Kozynchenko
AU  - I. S. Klimenko
TI  - The method of successive approximations for constructing a model of dynamic polynomial regression
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2022
SP  - 487
EP  - 500
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a3/
LA  - ru
ID  - VSPUI_2022_18_4_a3
ER  - 
%0 Journal Article
%A A. G. Golovkina
%A V. A. Kozynchenko
%A I. S. Klimenko
%T The method of successive approximations for constructing a model of dynamic polynomial regression
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2022
%P 487-500
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a3/
%G ru
%F VSPUI_2022_18_4_a3
A. G. Golovkina; V. A. Kozynchenko; I. S. Klimenko. The method of successive approximations for constructing a model of dynamic polynomial regression. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 487-500. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a3/