Keywords: dynamic systems, Taylor map.
@article{VSPUI_2022_18_4_a3,
author = {A. G. Golovkina and V. A. Kozynchenko and I. S. Klimenko},
title = {The method of successive approximations for constructing a model of dynamic polynomial regression},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {487--500},
year = {2022},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a3/}
}
TY - JOUR AU - A. G. Golovkina AU - V. A. Kozynchenko AU - I. S. Klimenko TI - The method of successive approximations for constructing a model of dynamic polynomial regression JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2022 SP - 487 EP - 500 VL - 18 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a3/ LA - ru ID - VSPUI_2022_18_4_a3 ER -
%0 Journal Article %A A. G. Golovkina %A V. A. Kozynchenko %A I. S. Klimenko %T The method of successive approximations for constructing a model of dynamic polynomial regression %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2022 %P 487-500 %V 18 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a3/ %G ru %F VSPUI_2022_18_4_a3
A. G. Golovkina; V. A. Kozynchenko; I. S. Klimenko. The method of successive approximations for constructing a model of dynamic polynomial regression. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 487-500. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a3/
[1] Jansson M., Wahlberg B., “A linear regression approach to state-space subspace system identification”, Signal Processing, 2 (1996), 103–129 | DOI
[2] Herceg S., Ujevic Z., Bolf A. N., “Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models”, Chemical Engineering Research and Design, 149 (2019), 95–103 | DOI
[3] Dette H., “Optimal designs for identifying the degree of a polynomial regression”, Annals of Statistics, 23:4 (1995), 1248–1266 | DOI | MR
[4] Kim B., Ko Ch.-Y., Wong N., “Tensor network subspace identification of polynomial state space models”, Automatica, 95 (2018), 187–196 | DOI | MR
[5] Blondel M., Ishihata M., Fujino A., Ueda N., “Polynomial networks and factorization machines: New insights and efficient training algorithms”, Proceedings of ICML 2016 (New York City, 2016), 850–858
[6] Blondel M., Niculae V., Otsuka T., Ueda N., “Multi-output polynomial networks and factorization machines”, Proceedings of the 31$^{\rm st}$ International Conference on Neural Information Processing Systems, NIPS'17 (Long Beach, 2017), 3351–3361
[7] Chen T., Guestrin C., “XGBoost: A Scalable tree boosting system”, Proceedings of the 22$^{\rm nd}$ ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'16 (San Francisco, 2016), 785–794 | DOI
[8] Hornik K., Stinchcombe M., White H., “Multilayer feedforward networks are universal approximators”, Neural Networks, 2 (1989), 359–366 | DOI | MR
[9] Rao S., Sethuraman S., Ramamurthi V., “A recurrent neural network for nonlinear time series prediction: a comparative study”, IEEE Workshop on Neural Networks for Signal Processing (NNSP'92) (Helsingoer, 1992), 531–539
[10] Kaheman K., Kutz J. N., Brunton S. L., “SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics”, Proceedings of the Royal Society A, 476:2242 (2020), 20200279 | DOI | MR
[11] Brunton S. L., Joshua L. P., Kutz N., “Discovering governing equations from data by sparse identification of nonlinear dynamical systems”, Proceedings of the National Academy of Sciences, 113:15 (2016), 3932–3937 | DOI | MR
[12] Andrianov S. N., Dynamical modeling of control systems for particle beams, St Petersburg University Press, St Petersburg, 2004, 368 pp.
[13] Dragt A., Lie methods for nonlinear dynamics with applications to accelerator physics, 2011 (accessed: August 10, 2022) inspirehep.net/record/955313/files/TOC28Nov2011.pdf
[14] Andrianov S., “Symbolic computation of approximate symmetries for ordinary differential equations”, Mathematics and Computers in Simulation, 57:3–5 (2001), 147–154 | DOI | MR
[15] Andrianov S., “A matrix representation of the Lie transformation”, Proceedings of the Abstracts of the International Congress on Computer Systems and Applied Mathematics (St Petersburg, 1993), v. 14, 19–23
[16] Ivanov A., Golovkina A., Iben U., “Polynomial neural networks and taylor maps for dynamical systems simulation and learning”, 24$^{\rm th}$ European Conference on Artificial Intelligence, including 10$^{\rm th}$ Conference on Prestigious Applications of Artificial Intelligence, PAIS 2020, Proceedings, Frontiers in Artificial Intelligence and Applications, IOS Press, 2020, 1230–1237 | DOI | MR
[17] Golovkina A., Kozynchenko V., Kulabukhova N., “Reconstruction and identification of dynamical systems based on taylor maps”, Computational Science and its Applications, 21$^{\rm st}$ International Conference, Proceedings, v. VIII, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Nature, Switzerland, 2021, 360–369 | DOI
[18] Golovkina A. G., Kozynchenko V. A., Kulabukhova N. V., “Reconstruction of ordinary differential equations from irregularly distributed time-series data”, Proceedings of the 9$^{\rm th}$ International Conference “Distributed Computing and Grid Technologies in Science and Education”, GRID'2021 (Dubna, Russia, July 5–9, 2021), CEUR Workshop Proceedings, 3041, 342–347
[19] Golovkina A. G., Ganaeva D. D., “Method of nonlinear dynamical systems reconstruction based on time series data”, Control Processes and Stability, 9:1 (2022), 197–201 (In Russian)
[20] Klimenko I. S., “Implementation of matrix map method for solving a system of ordinary equations”, Control Processes and Stability, 9:1 (2022), 53–57 (In Russian)
[21] Cartwright M. L., “Van der Pol's equation for relaxation oscillations”, Contributions to the theory of nonlinear oscillations. II, Princeton Ann. Math. Stud., Princeton University Press, Princeton, 1952, 3–18 | MR
[22] Abrevaya G., Rish I., Aravkin A. Y., Cecchi G., Kozloski J., Polosecki P., Zheng P., Dawson S. R., Rhee J., Cox D., Learning nonlinear brain dynamics: Van der Pol Meets LSTM, bioRxiv 330548 | DOI
[23] Ordinary differential equation solver for stiff or non-stiff system, LSODA, September 2005 (accessed: August 10, 2022) http://www.nea.fr/abs/html/uscd1227.html