@article{VSPUI_2022_18_4_a12,
author = {V. V. Yevstafyeva and A. M. Kamachkin and D. K. Potapov},
title = {Periodic modes in an automatic control system with a three-position hysteresis relay},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {596--607},
year = {2022},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a12/}
}
TY - JOUR AU - V. V. Yevstafyeva AU - A. M. Kamachkin AU - D. K. Potapov TI - Periodic modes in an automatic control system with a three-position hysteresis relay JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2022 SP - 596 EP - 607 VL - 18 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a12/ LA - ru ID - VSPUI_2022_18_4_a12 ER -
%0 Journal Article %A V. V. Yevstafyeva %A A. M. Kamachkin %A D. K. Potapov %T Periodic modes in an automatic control system with a three-position hysteresis relay %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2022 %P 596-607 %V 18 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a12/ %G ru %F VSPUI_2022_18_4_a12
V. V. Yevstafyeva; A. M. Kamachkin; D. K. Potapov. Periodic modes in an automatic control system with a three-position hysteresis relay. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 596-607. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a12/
[1] Tsypkin Ya. Z., Relay control systems, Nauka Publ, M., 1974, 575 pp. (In Russian) | MR
[2] El-Geldawi F., “Stabilization of a relay system containing three-position element and dead time”, Intern. Journal of Control, 11:2 (1970), 267–275 | DOI
[3] El-Geldawi F., “Exact analysis of a nonlinear time-delay control system containing a three-position relay with hysteresis”, Journal of Engineering and Applied Sciences, 1:4 (1981), 327–337
[4] Morzhov A. V., Faldin N. V., “Linearization of relay controlling systems with three-position relay block and nonlinear controlled plant with respect to the actual signal”, Journal of Computer and Systems Sciences International, 2008, no. 4, 5–14 (In Russian) | MR
[5] Kamachkin A. M., Shamberov V. N., “The decomposition method of research into the nonlinear dynamical systems' space of parameters”, Applied Mathematical Sciences, 9:81 (2015), 4009–4018 | DOI
[6] Macki J. W., Nistri P., Zecca P., “Mathematical models for hysteresis”, SIAM Review, 35:1 (1993), 94–123 | DOI | MR
[7] Mayergoyz I. D., Mathematical models of hysteresis and their applications, Elsevier, Amsterdam, 2003, 472 pp. | MR
[8] Visintin A., “Ten issues about hysteresis”, Acta Applicandae Mathematicae, 132:1 (2014), 635–647 | DOI | MR
[9] Kamachkin A. M., Potapov D. K., Yevstafyeva V. V., “Method for the transformation of complex automatic control systems to integrable form”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:2 (2021), 196–212 (In Russian) | DOI | MR
[10] Burns R. S., Advanced control engineering, Butterworth-Heinemann, Oxford, 2001, 464 pp.
[11] Paraskevopoulos P. N., Modern control engineering, Marcel Dekker Inc., New York, 2002, 736 pp.
[12] Kamachkin A. M., Potapov D. K., Yevstafyeva V. V., “Existence of periodic solutions to automatic control system with relay nonlinearity and sinusoidal external influence”, Intern. Journal of Robust and Nonlinear Control, 27:2 (2017), 204–211 | DOI | MR
[13] Kamachkin A. M., Potapov D. K., Yevstafyeva V. V., “Existence of subharmonic solutions to a hysteresis system with sinusoidal external influence”, Electronic Journal of Differential Equations, 140 (2017), 1–10 | MR
[14] Kamachkin A. M., Potapov D. K., Yevstafyeva V. V., “On uniqueness and properties of periodic solution of second-order nonautonomous system with discontinuous nonlinearity”, Journal of Dynamical and Control Systems, 23:4 (2017), 825–837 | DOI | MR
[15] Evstaf'eva V. V., “Periodic solutions of a system of differential equations with hysteresis nonlinearity in the presence of eigenvalue zero”, Ukrainian Mathematical Journal, 70:8 (2018), 1085–1096 (In Russian) | MR
[16] Evstaf'eva V. V., “On the existence of two-point oscillatory solutions of a perturbed relay system with hysteresis”, Differential Equations, 57:2 (2021), 169–178 (In Russian) | DOI
[17] Evstaf'eva V. V., “Existence of $T/k$-periodic solutions of a nonlinear nonautonomous system whose matrix has a multiple eigenvalue”, Mathematical Notes, 109:4 (2021), 529–543 (In Russian) | DOI
[18] Evstaf'eva V. V., “Existence of two-point oscillatory solutions of a relay nonautonomous system with multiple eigenvalue of a real symmetric matrix”, Ukrainian Mathematical Journal, 73:5 (2021), 640–650 (In Ukrainian)
[19] Kamachkin A. M., Potapov D. K., Yevstafyeva V. V., “Continuous dependence on parameters and boundedness of solutions to a hysteresis system”, Applications of Mathematics, 67:1 (2022), 65–80 | DOI | MR
[20] Leonov G. A., Shumafov M. M., Teshev V. A., Aleksandrov K. D., “Differential equations with hysteresis operators. Existence of solutions, stability, and oscillations”, Differential Equations, 53:13 (2017), 1764–1816 | DOI | MR
[21] Solovyov A. M., Semenov M. E., Meleshenko P. A., Reshetova O. O., Popov M. A., Kabulova E. G., “Hysteretic nonlinearity and unbounded solutions in oscillating systems”, Procedia Engineering, 201 (2017), 578–583 | DOI
[22] Kamachkin A. M., Potapov D. K., Yevstafyeva V. V., “Dynamics and synchronization in feedback cyclic structures with hysteresis oscillators”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:2 (2020), 186–199 (In Russian) | DOI | MR
[23] Fursov A. S., Todorov T. S., Krylov P. A., Mitrev R. P., “On the existence of oscillatory modes in a nonlinear system with hysteresis”, Differential Equations, 56:8 (2020), 1103–1121 (In Russian) | DOI
[24] Fursov A. S., Mitrev R. P., Krylov P. A., Todorov T. S., “On the existence of a periodic mode in a nonlinear system”, Differential Equations, 57:8 (2021), 1104–1115 (In Russian) | DOI
[25] Kamachkin A. M., Potapov D. K., Yevstafyeva V. V., “Synchronization in feedback cyclic structures of oscillators with hysteresis”, Stability and Control Processes, SCP 2020, Proceedings, Lecture Notes in Control and Information Sciences, Springer, Cham, 2022, 119–125 | DOI | MR
[26] Kamachkin A. M., Potapov D. K., Yevstafyeva V. V., “Fixed points of a mapping generated by a system of ordinary differential equations with relay hysteresis”, Differential Equations, 58:4 (2022), 456–469 (In Russian)
[27] Kamachkin A. M., Potapov D. K., Yevstafyeva V. V., “Existence of periodic modes in automatic control system with a three-position relay”, Intern. Journal of Control, 93:4 (2020), 763–770 | DOI | MR
[28] Kamachkin A. M., Shamberov V. N., “The research into the parameters' space bifurcation structure by the method of decomposition”, Control Systems and Information Technologies, 2012, no. 4(50), 11–13 (In Russian)
[29] Kamachkin A. M., Sogonov S. A., Shamberov V. N., “Forced periodic solutions of nonlinear multi-coupling systems”, Control Systems and Information Technologies, 2014, no. 1(55), 12–15 (In Russian)
[30] Kamachkin A. M., Shamberov V. N., “Existence of periodic motions in non-autonomous multidimensional nonlinear systems”, Control Systems and Information Technologies, 2015, no. 1(59), 16–19 (In Russian)