Convergence conditions for continuous and discrete models of population dynamics
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 443-453 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some classes of continuous and discrete generalized Volterra models of population dynamics are considered. It is supposed that there are relationships of the type ‘`symbiosis’’, "compensationism’’ or "neutralism’’ between any two species in a biological community. The objective of the work is to obtain conditions under which the investigated models possess the convergence property. This means that the studying system admits a bounded solution that is globally asimptotically stable. To determine the required conditions, the V. I. Zubov’s approach and its discrete-time counterpart are used. Constructions of Lyapunov functions are proposed, and with the aid of these functions, the convergence problem for the considered models is reduced to the problem of the existence of positive solutions for some systems of linear algebraic inequalities. In the case where parameters of models are almost periodic functions, the fulfilment of the derived conditions implies that limiting bounded solutions are almost periodic, as well. An example is presented illustrating the obtained theoretical conclusions.
Keywords: population dynamics, almost periodic oscillations, asymptotic stability, Lyapunov functions.
Mots-clés : convergence
@article{VSPUI_2022_18_4_a0,
     author = {A. Yu. Aleksandrov},
     title = {Convergence conditions for continuous and discrete models of population dynamics},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {443--453},
     year = {2022},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a0/}
}
TY  - JOUR
AU  - A. Yu. Aleksandrov
TI  - Convergence conditions for continuous and discrete models of population dynamics
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2022
SP  - 443
EP  - 453
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a0/
LA  - ru
ID  - VSPUI_2022_18_4_a0
ER  - 
%0 Journal Article
%A A. Yu. Aleksandrov
%T Convergence conditions for continuous and discrete models of population dynamics
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2022
%P 443-453
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a0/
%G ru
%F VSPUI_2022_18_4_a0
A. Yu. Aleksandrov. Convergence conditions for continuous and discrete models of population dynamics. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 443-453. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a0/

[1] Zubov V. I., Oscillations in nonlinear and controlled systems, Sudpromgiz Publ, L., 1962, 631 pp. (In Russian)

[2] Provotorov V. V., Sergeev S. M., Hoang V. N., “Point control of a differential-difference system with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:3 (2021), 277–286 | DOI | MR

[3] Zhabko A. P., Provotorov V. V., Ryazhskikh V. I., Shindyapin A. I., “Optimal control of a differential-difference parabolic systems with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:4 (2021), 433–448 | DOI | MR

[4] Tkhai V. N., “Model with coupled subsystems”, Automation and Remote Control, 74:6 (2013), 919–931 | DOI | MR

[5] Sedighi H. M., Daneshmand F., “Nonlinear transversely vibrating beams by the homotopy perturbation method with an auxiliary term”, Journal of Applied and Computational Mechanics, 1:1 (2015), 1–9 | MR

[6] Park Y., Lee C., “Dynamic investigation of non-linear behavior of hydraulic cylinder in mold oscillator using PID control process”, Journal of Applied and Computational Mechanics, 7:1 (2021), 270–276 | MR

[7] Aleksandrov A. Yu., Stepenko N. A., “Stability analysis of gyroscopic systems with delay under synchronous and asynchronous switching”, Journal of Applied and Computational Mechanics, 8:3 (2022), 1113–1119 | MR

[8] Demidovich B. P., Lectures on mathematical stability theory, Nauka Publ, M., 1967, 472 pp. (In Russian) | MR

[9] Pavlov A., Pogromsky A., van de Wouw N., Nijmeijer H., “Convergent dynamics, a tribute to Boris Pavlovich Demidovich”, Syst. Control Lett., 52 (2004), 257–261 | DOI | MR

[10] Ruffer B., van de Wouw N., Mueller M., “Convergent systems vs. incremental stability”, Syst. Control Lett., 62 (2013), 277–285 | DOI | MR

[11] Chen F., “Some new results on the permanence and extinction of nonautonomous Gilpin — Ayala type competition model with delays”, Nonlinear Analysis: Real World Applications, 7 (2006), 1205–1222 | DOI | MR

[12] Aleksandrov A., Aleksandrova E., “Convergence conditions for some classes of nonlinear systems”, Syst. Control Lett., 104 (2017), 72–77 | DOI | MR

[13] Mei W., Efimov D., Ushirobira R., Aleksandrov A., “On convergence conditions for generalized Persidskii systems”, Intern. Journal of Robust Nonlinear Control, 32:6 (2022), 3696–3713 | DOI | MR

[14] Pliss V. A., Nonlocal problems of the theory of oscillations, Academic Press, London, 1966, 306 pp. | MR

[15] Ataeva N. N., “The convergence property for difference systems”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2004, no. 4, 91–98 (In Russian)

[16] Yakubovich V., “Matrix inequalities in stability theory for nonlinear control systems. III. Absolute stability of forced vibrations”, Automation and Remote Control, 7 (1964), 905–917 | MR

[17] Nguen D. H., “Convergence conditions for some classes of nonlinear difference systems”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2011, no. 2, 90–96 (In Russian)

[18] Aleksandrov A. Yu., “Some convergence and stability conditions for nonlinear systems”, Differ. Equ., 36:4 (2000), 613–615 | DOI | MR

[19] Kosov A. A., Shchennikov V. N., “On the convergence phenomenon in complex almost periodic systems”, Differ Equ., 50:12 (2014), 1573–1583 | DOI | MR

[20] Strekopytov S. A., Strekopytova M. V., “On the convergence of dynamic quasiperiodic systems”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18:1 (2022), 79–86 (In Russian) | DOI | MR

[21] Pykh Yu. A., Equilibrium and stability in models of population dynamics, Nauka Publ, M., 1983, 182 pp. (In Russian) | MR

[22] Hofbauer J., Sigmund K., Evolutionary games and population dynamics, Cambridge University Press, Cambridge, 1998, 323 pp. | MR

[23] Britton N. F., Essential mathematical biology, Springer, London–Berlin–Heidelberg, 2003, 335 pp. | MR

[24] Aleksandrov A. Yu., Aleksandrova E. B., Platonov A. V., “Ultimate boundedness conditions for a hybrid model of population dynamics”, Proceedings of 21$^{\rm st}$ Mediterranean conference on Control and Automation (June 25–28, 2013, Platanias-Chania, Crite, Greece), 2013, 622–627 | DOI

[25] Khalanai A., Vexler D., Qualitative theory of impulsive systems, Translated from Romanian, ed. V. P. Rubanik, Mir Publ, M., 1971, 312 pp. (In Russian)