Convergence conditions for continuous and discrete models of population dynamics
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 443-453

Voir la notice de l'article provenant de la source Math-Net.Ru

Some classes of continuous and discrete generalized Volterra models of population dynamics are considered. It is supposed that there are relationships of the type ‘`symbiosis’’, "compensationism’’ or "neutralism’’ between any two species in a biological community. The objective of the work is to obtain conditions under which the investigated models possess the convergence property. This means that the studying system admits a bounded solution that is globally asimptotically stable. To determine the required conditions, the V. I. Zubov’s approach and its discrete-time counterpart are used. Constructions of Lyapunov functions are proposed, and with the aid of these functions, the convergence problem for the considered models is reduced to the problem of the existence of positive solutions for some systems of linear algebraic inequalities. In the case where parameters of models are almost periodic functions, the fulfilment of the derived conditions implies that limiting bounded solutions are almost periodic, as well. An example is presented illustrating the obtained theoretical conclusions.
Keywords: population dynamics, almost periodic oscillations, asymptotic stability, Lyapunov functions.
Mots-clés : convergence
@article{VSPUI_2022_18_4_a0,
     author = {A. Yu. Aleksandrov},
     title = {Convergence conditions for continuous and discrete models of population dynamics},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {443--453},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a0/}
}
TY  - JOUR
AU  - A. Yu. Aleksandrov
TI  - Convergence conditions for continuous and discrete models of population dynamics
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2022
SP  - 443
EP  - 453
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a0/
LA  - ru
ID  - VSPUI_2022_18_4_a0
ER  - 
%0 Journal Article
%A A. Yu. Aleksandrov
%T Convergence conditions for continuous and discrete models of population dynamics
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2022
%P 443-453
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a0/
%G ru
%F VSPUI_2022_18_4_a0
A. Yu. Aleksandrov. Convergence conditions for continuous and discrete models of population dynamics. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 443-453. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a0/