Mots-clés : convergence
@article{VSPUI_2022_18_4_a0,
author = {A. Yu. Aleksandrov},
title = {Convergence conditions for continuous and discrete models of population dynamics},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {443--453},
year = {2022},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a0/}
}
TY - JOUR AU - A. Yu. Aleksandrov TI - Convergence conditions for continuous and discrete models of population dynamics JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2022 SP - 443 EP - 453 VL - 18 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a0/ LA - ru ID - VSPUI_2022_18_4_a0 ER -
%0 Journal Article %A A. Yu. Aleksandrov %T Convergence conditions for continuous and discrete models of population dynamics %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2022 %P 443-453 %V 18 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a0/ %G ru %F VSPUI_2022_18_4_a0
A. Yu. Aleksandrov. Convergence conditions for continuous and discrete models of population dynamics. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 443-453. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a0/
[1] Zubov V. I., Oscillations in nonlinear and controlled systems, Sudpromgiz Publ, L., 1962, 631 pp. (In Russian)
[2] Provotorov V. V., Sergeev S. M., Hoang V. N., “Point control of a differential-difference system with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:3 (2021), 277–286 | DOI | MR
[3] Zhabko A. P., Provotorov V. V., Ryazhskikh V. I., Shindyapin A. I., “Optimal control of a differential-difference parabolic systems with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:4 (2021), 433–448 | DOI | MR
[4] Tkhai V. N., “Model with coupled subsystems”, Automation and Remote Control, 74:6 (2013), 919–931 | DOI | MR
[5] Sedighi H. M., Daneshmand F., “Nonlinear transversely vibrating beams by the homotopy perturbation method with an auxiliary term”, Journal of Applied and Computational Mechanics, 1:1 (2015), 1–9 | MR
[6] Park Y., Lee C., “Dynamic investigation of non-linear behavior of hydraulic cylinder in mold oscillator using PID control process”, Journal of Applied and Computational Mechanics, 7:1 (2021), 270–276 | MR
[7] Aleksandrov A. Yu., Stepenko N. A., “Stability analysis of gyroscopic systems with delay under synchronous and asynchronous switching”, Journal of Applied and Computational Mechanics, 8:3 (2022), 1113–1119 | MR
[8] Demidovich B. P., Lectures on mathematical stability theory, Nauka Publ, M., 1967, 472 pp. (In Russian) | MR
[9] Pavlov A., Pogromsky A., van de Wouw N., Nijmeijer H., “Convergent dynamics, a tribute to Boris Pavlovich Demidovich”, Syst. Control Lett., 52 (2004), 257–261 | DOI | MR
[10] Ruffer B., van de Wouw N., Mueller M., “Convergent systems vs. incremental stability”, Syst. Control Lett., 62 (2013), 277–285 | DOI | MR
[11] Chen F., “Some new results on the permanence and extinction of nonautonomous Gilpin — Ayala type competition model with delays”, Nonlinear Analysis: Real World Applications, 7 (2006), 1205–1222 | DOI | MR
[12] Aleksandrov A., Aleksandrova E., “Convergence conditions for some classes of nonlinear systems”, Syst. Control Lett., 104 (2017), 72–77 | DOI | MR
[13] Mei W., Efimov D., Ushirobira R., Aleksandrov A., “On convergence conditions for generalized Persidskii systems”, Intern. Journal of Robust Nonlinear Control, 32:6 (2022), 3696–3713 | DOI | MR
[14] Pliss V. A., Nonlocal problems of the theory of oscillations, Academic Press, London, 1966, 306 pp. | MR
[15] Ataeva N. N., “The convergence property for difference systems”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2004, no. 4, 91–98 (In Russian)
[16] Yakubovich V., “Matrix inequalities in stability theory for nonlinear control systems. III. Absolute stability of forced vibrations”, Automation and Remote Control, 7 (1964), 905–917 | MR
[17] Nguen D. H., “Convergence conditions for some classes of nonlinear difference systems”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2011, no. 2, 90–96 (In Russian)
[18] Aleksandrov A. Yu., “Some convergence and stability conditions for nonlinear systems”, Differ. Equ., 36:4 (2000), 613–615 | DOI | MR
[19] Kosov A. A., Shchennikov V. N., “On the convergence phenomenon in complex almost periodic systems”, Differ Equ., 50:12 (2014), 1573–1583 | DOI | MR
[20] Strekopytov S. A., Strekopytova M. V., “On the convergence of dynamic quasiperiodic systems”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18:1 (2022), 79–86 (In Russian) | DOI | MR
[21] Pykh Yu. A., Equilibrium and stability in models of population dynamics, Nauka Publ, M., 1983, 182 pp. (In Russian) | MR
[22] Hofbauer J., Sigmund K., Evolutionary games and population dynamics, Cambridge University Press, Cambridge, 1998, 323 pp. | MR
[23] Britton N. F., Essential mathematical biology, Springer, London–Berlin–Heidelberg, 2003, 335 pp. | MR
[24] Aleksandrov A. Yu., Aleksandrova E. B., Platonov A. V., “Ultimate boundedness conditions for a hybrid model of population dynamics”, Proceedings of 21$^{\rm st}$ Mediterranean conference on Control and Automation (June 25–28, 2013, Platanias-Chania, Crite, Greece), 2013, 622–627 | DOI
[25] Khalanai A., Vexler D., Qualitative theory of impulsive systems, Translated from Romanian, ed. V. P. Rubanik, Mir Publ, M., 1971, 312 pp. (In Russian)