Convergence conditions for continuous and discrete models of population dynamics
    
    
  
  
  
      
      
      
        
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 443-453
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Some classes of continuous and discrete generalized Volterra models of population dynamics are considered. It is supposed that there are relationships of the type ‘`symbiosis’’, "compensationism’’ or "neutralism’’ between any two species in a biological community. The objective of the work is to obtain conditions under which the investigated models possess the convergence property. This means that the studying system admits a bounded solution that is globally asimptotically stable. To determine the required conditions, the V. I. Zubov’s approach and its discrete-time counterpart are used. Constructions of Lyapunov functions are proposed, and with the aid of these functions, the convergence problem for the considered models is reduced to the problem of the existence of positive solutions for some systems of linear algebraic inequalities. In the case where parameters of models are almost periodic functions, the fulfilment of the derived conditions implies that limiting bounded solutions are almost periodic, as well. An example is presented illustrating the obtained theoretical conclusions.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
population dynamics, almost periodic oscillations, asymptotic stability, Lyapunov functions.
Mots-clés : convergence
                    
                  
                
                
                Mots-clés : convergence
@article{VSPUI_2022_18_4_a0,
     author = {A. Yu. Aleksandrov},
     title = {Convergence conditions for continuous and discrete models of population dynamics},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {443--453},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a0/}
}
                      
                      
                    TY - JOUR AU - A. Yu. Aleksandrov TI - Convergence conditions for continuous and discrete models of population dynamics JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2022 SP - 443 EP - 453 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a0/ LA - ru ID - VSPUI_2022_18_4_a0 ER -
%0 Journal Article %A A. Yu. Aleksandrov %T Convergence conditions for continuous and discrete models of population dynamics %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2022 %P 443-453 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a0/ %G ru %F VSPUI_2022_18_4_a0
A. Yu. Aleksandrov. Convergence conditions for continuous and discrete models of population dynamics. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 443-453. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a0/
