Optimal boundary control of string oscillations by displacement at two ends with specified values of deflection function at intermediate moments of time
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 3, pp. 410-424 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of optimal boundary control for the equation of string vibrations with given initial, final conditions and given values of the string deflection function at intermediate moments of time and with a quality criterion specified over the entire time interval. Using the method of separation of variables and methods of optimal control theory with multipoint intermediate conditions, optimal boundary controls are constructed for arbitrary numbers of the first harmonics. As an application of the proposed constructive approach, a boundary optimal control is built with a given string deflection function at an intermediate moment of time.
Keywords: string vibrations, optimal boundary control, optimal vibration control, intermediate conditions
Mots-clés : variables separation.
@article{VSPUI_2022_18_3_a9,
     author = {V. R. Barseghyan},
     title = {Optimal boundary control of string oscillations by displacement at two ends with specified values of deflection function at intermediate moments of time},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {410--424},
     year = {2022},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a9/}
}
TY  - JOUR
AU  - V. R. Barseghyan
TI  - Optimal boundary control of string oscillations by displacement at two ends with specified values of deflection function at intermediate moments of time
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2022
SP  - 410
EP  - 424
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a9/
LA  - ru
ID  - VSPUI_2022_18_3_a9
ER  - 
%0 Journal Article
%A V. R. Barseghyan
%T Optimal boundary control of string oscillations by displacement at two ends with specified values of deflection function at intermediate moments of time
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2022
%P 410-424
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a9/
%G ru
%F VSPUI_2022_18_3_a9
V. R. Barseghyan. Optimal boundary control of string oscillations by displacement at two ends with specified values of deflection function at intermediate moments of time. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 3, pp. 410-424. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a9/

[1] Butkovskiy A. G., Theory of optimal control of systems with distributed parameters, Nauka Publ, M., 1965, 476 pp. (In Russian)

[2] Znamenskaya L. N., Control of elastic vibrations, Fizmatlit Publ, M., 2004, 176 pp. (In Russian)

[3] Zuazua E., Controllability of partial differential equations, Universidad Autonoma, Madrid, 2002, 311 pp.

[4] Abdukarimov M. F., “On optimal boundary control of displacements in the process of forced vibrationson both ends of a string”, Dokl. Akad. Nauk Republic of Tadzhikistan, 56:8 (2013), 612–618 (In Russian) | MR

[5] Andreev A. A., Leksina S. V., “The boundary control problem for the system of wave equations”, Vestnik of Samara State Technical University. Series Physics and Mathematics Sciences, 2008, no. 1(16), 5–10 (In Russian) | Zbl

[6] Gibkina N. V., Sidorov M. V., Stadnikova A. V., “Optimal boundary control of vibrations of uniform string”, Radioelektronics and informatics, 2016, no. 2, 3–11 (In Russian)

[7] Il'in V. A., Moiseev E. I., “Optimization of boundary controls of string vibrations”, Russian Mathematical Surveys, 60:6 (2005), 1093–1119 | DOI | MR

[8] Moiseev E. I., Kholomeeva A. A., “On an optimal boundary control problem with a dynamic boundary condition”, Differential Equations, 49 (2013), 640–644 | DOI | MR | Zbl

[9] Moiseev E. I., Kholomeyeva A. A., Frolov A. A., “Boundary displacement control for the oscillation process with boundary conditions of damping type for a time less than critical”, Proceedings of the Intern. Conference “Mathematical Modelling in Applied Sciences, ICMMAS–17”. St Petersburg Polytechnical University, July, 24–28 2017, Results of science and technology. Series Modern Mathematics and its Applications. Thematic overview, 160, VINITI Publ., M., 2019, 74–84 (In Russian) | MR

[10] Kopets M. M., “The problem of optimal control of the string vibration process”, The theory of optimal solutions, V. M. Glushkov Institute of Cybernetics NAS of Ukraine Publ., Kiev, 2014, 32–38 (In Russian)

[11] Barseghyan V. R., “Optimal control of string vibrations with nonseparate state function conditions at given intermediate instants”, Automation and Remote Control, 81:2 (2020), 226–235 | DOI | MR | Zbl

[12] Barseghyan V. R., “About one problem of optimal control of string oscillations with non-separated multipoint conditions at intermediate moments of time”, Stability, Control and Differential Games, Lecture Notes in Control and Information Sciences, eds. A. Tarasyev, V. Maksimov, T. Filippova, Springer, Cham, 2020, 13–25 | DOI | MR | Zbl

[13] Barseghyan V. R., Saakyan M. A., “The optimal control of wire vibration in the states of the given intermediate periods of time”, Proceedings of NAS of Republic Armenia. Mechanics, 61:2 (2008), 52–60 (In Russian) | MR

[14] Barseghyan V. R., “About one problem of optimal boundaery control of string vibrations with restrictions in the intermediate moment of time”, Proceedings of the 11$^{th}$ Intern. Chetaev Conference “Analytical mechanics, stability and control”, pt 1 (June, 13–17, 2017), v. 3, Kazan Scientific Research Tech. University Publ., Kazan, 2017, 119–125 (In Russian)

[15] Barseghyan V. R., Solodusha S. V., “The problem of boundary control of string vibrations by displacement of the left end when the right end is fixed with the given values of the deflection function at intermediate times”, Russian Universities Reports. Mathematics, 25:130 (2020), 131–146 (In Russian) | Zbl

[16] Barseghyan V. R., Movsisyan L. A., “Optimal control of the vibration of elastic systems described by the wave equation”, Intern. Applied Mechanics, 48:2 (2012), 234–239 | DOI | MR

[17] Barseghyan V. R., Control of compound dynamic systems and of systems with multipoint intermediate conditions, Nauka Publ, M., 2016, 230 pp. (In Russian)

[18] Korzyuk V. I., Kozlovskia I. S., “Two-point boundary problem for the equation of string vibration with the given velocity at the certain moment of time. II”, Proceedings of the Institute of Mathematics NAS of Belarus, 19:1 (2011), 62–70 (In Russian) | MR | Zbl

[19] Tikhonov A. N., Samarskii A. A., Equations of mathematical physics, Nauka Publ, M., 1977, 736 pp. (In Russian) | MR

[20] Krasovsky N. N., The theory of motion control, Nauka Publ, M., 1968, 476 pp. (In Russian)