Photocatalytic fatigue of the polymer nanocomposites
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 3, pp. 390-401 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the change in mechanical properties of polymeric nanocomposites with photoactive components caused by solar range lighting. Given degradation photoassisted processes are related with the semiconductor nature of component photoactive particles as photocatalysts. Semiconductor particles can be transferred into electron-exited states due to light quanta absorption. One possible way out from these states is through redox electrochemical reactions with neighbor molecules. The redox reactions can produce transformations of polymer structure and composition, decreasing its mechanical strength. The term “photocatalytic fatigue” denotes a special case of the photo-degradation of polymers resulted only in a change in the strength value of the material. We review not numerous published data on investigations of changes in mechanical properties of polymeric nanocomposite, and mainly in the strength value, arisen from solar range light irradiation. We compare the degradation processes of polymeric nanocomposites containing photoactive components and of the high-cycle fatigue in metals. Likewise, we propose the use of equations of metal high-cycle fatigue curves as a possible approach to mathematical modeling of the processes of polymeric nanocomposites photodegradation. In this, the number of cycles is substitution with exposure time. Especially, the high-cycle fatigue curve equation for the samples with stress concentrations is considered. The experimental parameters of the “photocatalytic fatigue” equation for polymer nanocomposites containing photoactive components are calculated using the Monte Carlo method.
Mots-clés : photocatalysis, polymer nanocomposites, cyclic fatigue, stress concentration
Keywords: polypropylene, titanium dioxide, Wohler curve, Monte Carlo method.
@article{VSPUI_2022_18_3_a7,
     author = {A. V. Orekhov and Yu. M. Artem'ev and G. V. Pavilaynen},
     title = {Photocatalytic fatigue of the polymer nanocomposites},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {390--401},
     year = {2022},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a7/}
}
TY  - JOUR
AU  - A. V. Orekhov
AU  - Yu. M. Artem'ev
AU  - G. V. Pavilaynen
TI  - Photocatalytic fatigue of the polymer nanocomposites
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2022
SP  - 390
EP  - 401
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a7/
LA  - ru
ID  - VSPUI_2022_18_3_a7
ER  - 
%0 Journal Article
%A A. V. Orekhov
%A Yu. M. Artem'ev
%A G. V. Pavilaynen
%T Photocatalytic fatigue of the polymer nanocomposites
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2022
%P 390-401
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a7/
%G ru
%F VSPUI_2022_18_3_a7
A. V. Orekhov; Yu. M. Artem'ev; G. V. Pavilaynen. Photocatalytic fatigue of the polymer nanocomposites. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 3, pp. 390-401. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a7/

[1] Fishman G. S., Monte Carlo: concepts, algorithms and applications, Springer, New York, USA, 1996, 698 pp. | MR | Zbl

[2] Asmussen S., Glynn P. W., Stochastic simulation: algorithms and analysis, Springer, New York, USA, 2007, 476 pp. | MR | Zbl

[3] Kroese D. P., Taimre T., Botev Z. I., Handbook of Monte Carlo methods, John Wiley Sons, New York, USA, 2011, 772 pp. | Zbl

[4] Ermakov S. M., Monte-Carlo method and related issues, Nauka Publ, M., 1975, 472 pp. (In Russian)

[5] Ermakov S. M., Zhiglyavsky A. A., Mathematical theory of optimal experiment, Nauka Publ, M., 1987, 320 pp. (In Russian)

[6] Zhiglyavsky A. A., Mathematical theory of global random search, Publishing House of Leningrad State University, Leningrad, 1985, 296 pp. (In Russian) | MR

[7] Nocedal J., Wright S., Numerical optimization, Springer, New York, USA, 2006, 664 pp. | MR | Zbl

[8] Vasiliev F. P., Optimization methods, Publishing House of the Moscow Center for Continuous Mathematical Education, M., 2011, 434 pp. (In Russian)

[9] Malozemov V. N., Tamasyan G. Sh., “On the direction of the steepest descent”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:4 (2019), 489–501 (In Russian) | DOI | MR

[10] Hanemann T., Szabo D. V., “Polymer-nanoparticle composites: From synthesis to modern applications”, Materials, 3 (2010), 3468–3517 | DOI

[11] Oladele I. O., Omotosho T. F., Adediran A. A., “Polymer-based composites: An indispensable material for present and future applications”, Intern. Journal of Polymer Science, 2020, 8834518, 12 pp. | DOI

[12] Zepeng M., Zhangbin Y., Jun Zh., “SrTiO$_3$ as a new solar reflective pigment on the cooling property of PMMA-ceramic composites”, Ceramics International, 45:13 (2019), 16078–16087 | DOI

[13] Shuang Shi, Dongya Sh., Tao Xu, Yuqing Zh., “Thermal, optical, interfacial and mechanical properties of titanium dioxide/shape memory polyurethane nanocomposites”, Composites Science and Technology, 164:18 (2018), 17–23 | DOI

[14] Semiconductor photoelectrochemistry, trans. ed. P. N. Bartlett, Consultants Bureau, New York, 1986, xxv+422 pp.

[15] Ranby B. J., Rabek J. F., Photodegradation, photo-oxidation, and photostabilization of polymers, Wiley Publ, London, UK, 1975, 652 pp.

[16] Klemchuk P. P., “Influence of pigments on the light stability of polymers: A critical review”, Polymer Photochemistry, 3:1 (1983), 1–27 | DOI

[17] Emanue'l N. M., Buchachenko A. L., The chemical physics of the molecular decomposition and stabilization of polymers, Nauka Publ, M., 1988, 388 pp. (In Russian)

[18] Egerton G. S., “Photosensitizing properties of dyes and white pigments”, Nature, 204 (1964), 1153–1155 | DOI

[19] Egerton G. S., Shah K. M., “The effect of temperature on the photochemical degradation of textile materials. Pt I. Degradation sensitized by titanium dioxide”, Textile Research Journal, 38:2 (1968), 130–135 | DOI

[20] Kamrannejad M. M., Hasanzadeha A., Nosoudi N., Mai L., Babaluo A. A., “Photocatalytic degradation of polypropylene/TiO$_2$ nano-composites materials”, Research-Ibero-American Journal of Materials, 17:4 (2014), 1039–1046 | DOI

[21] Mavric Z., Tomsic B., Simoncic B., “Recent advances in the ultraviolet protection finishing of textiles”, Tekstilec, 61:3 (2018), 201–220 | DOI

[22] Wiener J., Chladova A., Shahidi Sh., Peterova L., “Effect of UV irradiation on mechanical and morphological properties of natural and synthetic fabric before and after nano-TiO$_2$ padding”, Autex Research Journal, 17:4 (2017), 370–378 | DOI | MR

[23] Chang H. T., Wu N. M., Zhu F., “A kinetic model for photocatalytic degradation of organic contaminants in a thin film TiO$_2$ catalyst”, Water Research, 34:2 (2000), 407–416 | DOI

[24] Sanongraj W., Chen Y., Crittenden J. C., Destaillats H., Hand D. W., Perram D. L., Taylor R., “Mathematical model for photocatalytic destruction of organic contaminants in air”, Journal of the Air Waste Management Association, 57:9 (2007), 1112–1122 (Publ. online: February 24, 2012) | DOI

[25] Lee Q. Y., Li H., “Photocatalytic degradation of plastic waste: A mini review”, Micromachines, 12 (2021), 907 | DOI

[26] Wöhler A., “Über die festigkeitsversuche mit eisen ünd stahl”, Zeitschrift für Bauwesen, 20 (1870), 73–106

[27] Rozumek D., “The development of fatigue cracks in metals”, Materials Research Proceedings, 12 (2019), 124–130 | DOI

[28] Schijve J., Fatigue of structures and materials, Springer, Berlin–Heidelberg, 2009, 622 pp.

[29] Kim H. S., Mechanics of solids and fracture, $3^{\rm rd}$ ed., Bookboon, London, UK, 2018, 223 pp.

[30] Stepnov M. N., Naumkin A. C., “A computational and experimental method for plotting multicycle fatigue curves for structural”, Journal of machinery manufacture and reliability, 41:1 (2012), 34–38 (In Russian)

[31] Kulawinski D., Nagel K., Henkel S., Hubnerb P., Fischer H., Kuna M., Biermann H., “Characterization of stress-strain behavior of a cast TRIP steel under different biaxial planar load ratios”, Engineering Fracture Mechanics, 78:8 (2011), 1684–1695 | DOI