@article{VSPUI_2022_18_3_a5,
author = {{\CYRS}. Y. Diop and M. V. Kaparkova and V. P. Kukhtin and A. A. Makarov and I. Yu. Rodin and S. E. Sytchevsky and A. A. Firsov},
title = {Numerical models for analysis and adjustment of magnetic field in medical centers. {I.} {Simulation} of geomagnetic field disturbances},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {365--378},
year = {2022},
volume = {18},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a5/}
}
TY - JOUR AU - С. Y. Diop AU - M. V. Kaparkova AU - V. P. Kukhtin AU - A. A. Makarov AU - I. Yu. Rodin AU - S. E. Sytchevsky AU - A. A. Firsov TI - Numerical models for analysis and adjustment of magnetic field in medical centers. I. Simulation of geomagnetic field disturbances JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2022 SP - 365 EP - 378 VL - 18 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a5/ LA - ru ID - VSPUI_2022_18_3_a5 ER -
%0 Journal Article %A С. Y. Diop %A M. V. Kaparkova %A V. P. Kukhtin %A A. A. Makarov %A I. Yu. Rodin %A S. E. Sytchevsky %A A. A. Firsov %T Numerical models for analysis and adjustment of magnetic field in medical centers. I. Simulation of geomagnetic field disturbances %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2022 %P 365-378 %V 18 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a5/ %G ru %F VSPUI_2022_18_3_a5
С. Y. Diop; M. V. Kaparkova; V. P. Kukhtin; A. A. Makarov; I. Yu. Rodin; S. E. Sytchevsky; A. A. Firsov. Numerical models for analysis and adjustment of magnetic field in medical centers. I. Simulation of geomagnetic field disturbances. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 3, pp. 365-378. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a5/
[1] Rezinkina M. M., Erisov A. V., Pelevin D. E., Lobjanidze L. E., “Experimental researches of influence of induced and residual magnetizing in ferromagnetic constructions on weakening of geomagnetic field in dwellings apartments”, Vestnik of Khar'kov Polytechnical Institute, 2009, no. 41, 111–120 (In Russian)
[2] Rozov V. Yu., Zavalnyi A. V., Zolotov S. M., Gretskikh S. V., “The normalization methods of the static geomagnetic field inside houses”, Electrotechnics and Electromechanics, 2015, no. 2, 35–40 (In Russian)
[3] Amoskov V. M., Bazarov A. M., Belyakov V. A., Gapionok E. I., Kaparkova M. V., Kukhtin V. P., Lamzin E. A., Lyublin B. V., Sytchevsky S. E., “Modelling of magnetic field perturbations in electrophysical devices due to the steel reinforcement of buildings”, Technical Physics, 62:10 (2017), 1466–1472 | DOI
[4] Amoskov V., Bazarov A., Kaparkova M., Kukhtin V., Lamzin E., Lyublin B., Belyakov V., Sytchevsky S., Gribov Y., “Modeling magnetic effects of steel rebar of concrete surroundings for electrophysical apparatus”, RuPAC 2016. THPSC007, 553–555 | DOI
[5] Amoskov V., Bazarov A., Belyakov V., Gapionok E., Gribov Y., Kaparkova M., Kukhtin V., Lamzin E., Lyublin B., Ovsyannikov D., Sytchevsky S., “Calculation of magnetic field from steel rebar of building with machine producing high stray field”, Fusion Eng. Des., 135 (2018), 165–173 | DOI
[6] Official cite of ITER organization, (accessed: June 26, 2021) www.iter.org
[7] Amoskov V. M., Belov A. V., Belyakov V. A., Gapionok E. I., Gribov Y. V., Kukhtin V. P., Lamzin E. A., Mita Y., Ovsyannikov A. D., Ovsyannikov D. A., Patisson L., Sytchevsky S. E., Zavadskiy S. V., “Magnetic model MMTC-2.2 of ITER tokamak complex”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:1 (2019), 5–21 | DOI | MR
[8] Amoskov V., Belov A., Belyakov V., Gribov Y., Kukhtin V., Lamzin E., Maximenkova N., Sytchevsky S., “Stray magnetic field produced by ITER Tokamak Complex”, Plasma Devices Oper., 17:4 (2009), 230–237 | DOI
[9] Conley C. C., A review of the biological effects of very low magnetic fields, Report NASA TN D-5902, National Aeronautics and Space Administration, Washington, D. C., 1970, 25 pp. (No 20546)
[10] Wang X., Li B., Xu M., Li D., Jiang J., “Long-term memory was impaired in one-trial passive avoidance task of day-old chicks hatching from hypomagnetic field space”, China Sci. Bull., 48:22 (2003), 2454–2457 | DOI
[11] Zhang B., Lu H., Xi W., Zhou X., Xu S., Zhang K., Jiang J., Li Y., Guo A., “Exposure to hypomagnetic field space for multiple generations causes amnesia in Drosophila melanogaster”, Neuroscience Letters, 371:2–3 (2004), 190–195 | DOI
[12] Zhang X., Li J.-F., Wu Q.-J., Li B., Jiang J., “Effects of hypomagnetic field in noradrenergic activities in the brainstem of golden hamster”, Bioelectromagnetics, 28 (2007), 155–158 | DOI
[13] Binhi V. N., Prato F. S., “Biological effects of the hypomagnetic field. An analytical review of experiments and theories”, PLoS One, 12:6 (2017), 1–51 | DOI
[14] Johnson-Groh M., Merzdorf J., NASA's Goddard Space Flight Center, Greenbelt, (accessed: August 19, 2020) https://www.nasa.gov/feature/nasa-researchers-track-slowly-splitting-dent-in-earth-s-magnetic-field
[15] Ahmad M., Galland P., Ritz T., Wiltschko R., Wiltschko W., “Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana”, Planta, 225 (2007), 615–624 | DOI
[16] Buchachenko A. L., Kuznetsov D. A., “Magnetic field affects enzymatic ATP synthesis”, Journal of Amer. Chem. Soc., 130:39 (2008), 12868–12869 | DOI
[17] Hore P. J., “Are biochemical reactions affected by weak magnetic fields?”, Proceedings Natl. Acad. Sci. USA, 109:5 (2012), 1357–1358 | DOI
[18] Servick K., “Humans — like other animals — may sense Earth's magnetic field”, Science, 363:6433 (2019), 1257–1258 | DOI
[19] Sarimov R. M., Binhi V. N., Milyaev V. A., “The influence of geomagnetic field compensation on human cognitive processes”, Biophysics, 53 (2008), 433–441 | DOI
[20] Van Huizen A. V., Morton J. M., Kinsey L. J., Von Kannon D. G., Saad M. A., Birkholz T. R., Czajka J. M., Cyrus J., Barnes F. S., Beane W. S., “Weak magnetic fields alter stem cell-mediated growth”, Science Advances, 5:1 (2019), 7201 | DOI
[21] Shimojo S., Wu D.-A., Kirschvink J., “New evidence for a human magnetic sense that lets your brain detect the Earth's magnetic field”, The Conversation (accessed: March 18, 2019) https://theconversation.com/new-evidence-for-a-human-magnetic-sense-that-lets-your-brain-detect-the-earths-magnetic-field-36
[22] Thoss F., Bartsch B., “The human visual threshold depends on direction and strength of a weak magnetic field”, Journal of Comparative Physiology A, 189 (2003), 777–779 | DOI
[23] Pokhodzey L. V., “Hypogeomagnetic field as health hazard”, Transactions of II Intern. Conference “Electromagnetic fields and health to means”, M., 1999, 135–136 (In Russian)
[24] Nakhilnitzkaya Z. N., Mastryukova V. M., Andrianova L. A., Borodkina A. T., “Biological response to the “zero” magnetic field”, Cosmical Biology and Aviacosmical Medicine, 1978, no. 2, 74–76 (In Russian)
[25] National hygienic and sanitary standards and codes. SanPiN 2.1.8/2.2.4.2490-09. Industrial environment. Electromagnetic fields, Rospotrebnadzor Publ., M., 2009, 1 pp. (In Russian)
[26] National hygienic and sanitary standards and codes. SanPiN 2.1.8/2.2.4.2489-09. Hypomagnetic field in industrial, dwelling and public buildings, Rospotrebnadzor Publ., M., 2009, 13 pp. (In Russian)
[27] Korovkin N., Diop C. Y., “Minimization of electromagnetic fields intensity and optimization of electrical wiring networks in healthcare facilities”, 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW), 2016, 604–607 | DOI
[28] World magnetic model calculator, (accessed: June 26, 2021) www.geomag.bgs.ac.uk/data_service/models_compass/igrf_calc.html
[29] Amoskov V., Belov A., Belyakov V., Gribov Y., Kukhtin V., Lamzin E., Maximenkova N., Sytchevsky S., “Assessment of error field from ferromagnetic surrounding of ITER tokamak: ferromagnetic rebar of Tokamak Complex building”, Plasma Devices Oper., 16:4 (2008), 225–233 | DOI
[30] Amoskov V., Belov A., Belyakov V., Gribov Y., Kukhtin V., Lamzin E., Maximenkova N., Sytchevsky S., “Stray magnetic field produced by ITER tokamak complex”, Plasma Devices Oper, 17 (2009), 230–237 | DOI
[31] Amoskov V., Belov A., Belyakov V., Gribov Y., Kavin A., Kukhtin V., Lamzin E., Lobanov K., Maximenkova N., Mineev A., Sytchevsky S., “Stray magnetic field at plasma initiation produced by ferromagnetic elements of the ITER Tokamak Complex”, Plasma Devices Oper, 17:4 (2009), 238–249 | DOI
[32] Karaush S. A., Kuznetsov A. V., “Effect of metal facade systems on geomagnetic field of indoors”, Vestnik of Tomsk State Architectural and Building University, 38:1 (2013), 83–87 (In Russian)
[33] Amoskov V., Belov A., Belyakov V., Gribov Y., Kukhtin V., Lamzin E., Maximenkova N., Sytchevsky S., “Assesment of error field from solitary ferromagnetic elements located outside of ITER tokamak”, Plasma Devices Oper., 16 (2008), 171–179 | DOI
[34] Amoskov V., Gribov Y., Lamzin E., Sythevsky S., “Assessment of $n=1$ “overlap” error field produced by localized steel objects placed at different levels of ITER Tokamak building”, Fusion Eng. Des., 148 (2019), 111271 | DOI
[35] Amoskov V. M., Belov A. V., Belyakov V. A., Belyakova T. F., Gribov Yu. A., Kukhtin V. P., Lamzin E. A., Sytchevsky S. E., “Computation technology based on KOMPOT and KLONDIKE codes for magnetostatic simulations in tokamaks”, Plasma Devices Oper., 16 (2008), 89–103 | DOI
[36] Belyakov V. A., Sytchevsky S. E., “Aspects of EM field simulations for designing, analyzing and optimizing the tokamak-type fusion reactors”, Proceedings of Russian Academy of Sciences. Energetics, 2014, no. 1, 141–149 (In Russian) | MR
[37] Rozov V. Y., Levina S. V., “Modeling of the static geomagnetic field indoor dwelling houses”, Tehnichna Electrodinamika, 2014, no. 4, 8–10 (In Russian)