Random information horizon for a class of differential games with continuous updating
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 3, pp. 337-346 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we consider a class of the differential games with continuous updating with random information horizon. It is assumed that at each time instant, players have information about the game (motion equations and payoff functions) for a time interval with the length $\theta$ and as the time evolves information about the game updates. We first considered this type of games in 2019. Here we additionally assume that $\theta$ is a random variable. The subject of the current paper is definition of Nash equilibrium based solution concept and solution technique based on Hamilton — Jacobi — Bellman equations.
Keywords: differential games with continuous updating, Nash equilibrium, Hamilton — Jacobi — Bellman equation, random information horizon.
@article{VSPUI_2022_18_3_a3,
     author = {A. V. Tur and O. L. Petrosian},
     title = {Random information horizon for a class of differential games with continuous updating},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {337--346},
     year = {2022},
     volume = {18},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a3/}
}
TY  - JOUR
AU  - A. V. Tur
AU  - O. L. Petrosian
TI  - Random information horizon for a class of differential games with continuous updating
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2022
SP  - 337
EP  - 346
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a3/
LA  - en
ID  - VSPUI_2022_18_3_a3
ER  - 
%0 Journal Article
%A A. V. Tur
%A O. L. Petrosian
%T Random information horizon for a class of differential games with continuous updating
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2022
%P 337-346
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a3/
%G en
%F VSPUI_2022_18_3_a3
A. V. Tur; O. L. Petrosian. Random information horizon for a class of differential games with continuous updating. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 3, pp. 337-346. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a3/

[1] Kuchkarov I., Petrosian O., “On class of linear quadratic non-cooperative differential games with continuous updating”, Lecture Notes in Computer Science, 11548, 2019, 635–650 | DOI | MR | Zbl

[2] Petrosian O., Tur A., “Hamilton — Jacobi — Bellman equations for non-cooperative differential games with continuous updating”, Mathematical Optimization Theory and Operations Research, MOTOR 2019, Communications in Computer and Information Science, 1090, eds. I. Bykadorov, V. Strusevich, T. Tchemisova, 2019, 178–191 | DOI | MR

[3] Kuchkarov I., Petrosian O., “Open-loop based strategies for autonomous linear quadratic game models with continuous updating”, Mathematical Optimization Theory and Operations Research, MOTOR 2020, Lecture Notes in Computer Science, 12095, eds. A. Kononov, M. Khachay, V. Kalyagin, P. Pardalos, 2020, 212–230 | DOI | MR | Zbl

[4] Wang Z., Petrosian O., “On class of non-transferable utility cooperative differential games with continuous updating”, Journal of Dynamics $\$ Games, 7:4 (2020), 291–302 | DOI | MR | Zbl

[5] Shi L., Petrosian O. L., Boiko A. V., “Looking forward approach for dynamic cooperative advertising game model”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:2 (2019), 221–234 | DOI | MR

[6] Petrosyan L. A., Murzov N. V., “Game-theoretic problems in mechanics”, Lithuanian Mathematical Collection, 3 (1966), 423–433 | DOI | MR

[7] Petrosyan L. A., Shevkoplyas E. V., “Cooperative differential games with random duration”, Vestnik of Saint Peterburg University. Series 1. Mathematics. Mechanics. Astronomia, 2000, no. 4, 18–23 | MR | Zbl

[8] Shevkoplyas E. V., “The Hamilton — Jacobi — Bellman equation for a class of differential games with random duration”, Autom. Remote Control, 75 (2014), 959–970 | DOI | MR

[9] Bellman R., Dynamic programming, Princeton University Press, Princeton, 1957, 342 pp. | MR | Zbl

[10] Dockner E. J., Jorgensen S., Long N. V., Sorger G., Differential games in economics and management science, Cambridge University Press, Cambridge, 2000, 382 pp. | MR | Zbl

[11] Kostyunin S., Palestini A., Shevkoplyas E., “A differential game-based approach to extraction of exhaustible resource with random terminal instants”, Contributions to Game Theory and Management, 5 (2012), 147–155 | MR | Zbl

[12] Petrosian O., Tur A., Wang Z., Gao H., “Cooperative differential games with continuous updating using Hamilton — Jacobi — Bellman equation”, Optimization methods and software, 2020, 1099–1127 | DOI | MR