To the problem of the pursuit in quasilinear differential lag games
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 3, pp. 328-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the field of the theory of differential games defined in a finite-dimensional space, fundamental works were carried out by L. S. Pontryagin, N. N. Krasovskiy, B. N. Pshenichny, L. S. Petrosyan, M. S. Nikol’skiy, N. Yu. Satimov and others. L. S. Pontryagin and his students consider differential games separately, from the point of view of the pursuer and from the point of view of the evader, which inevitably connects the differential game with two different problems. In this paper, in a Hilbert space, we consider the pursuit problem in the sense of L. S. Pontryagin for a quasilinear differential game, when the dynamics of the game is described by a differential equation of retarded type with a closed linear operator generating a strongly continuous semigroup. Two main theorems on the solvability of the pursuit problem are proved. In the first theorem, a set of initial positions is found from which it is possible to complete the pursuit with a guaranteed pursuit time. The second theorem defines sufficient conditions on the optimality of the pursuit time. The results obtained generalize the results of works by P. B. Gusyatnikov, M. S. Nikol'skiy, E. M. Mukhsinov, and M. N. Murodova, in which it is described by a differential equation of retarded type in a Hilbert space. Our results make it possible to study delayed-type conflict-controlled systems not only with lumped, but also with distributed parameters.
Keywords: pursuit problem, delay differential game, Hilbert space, optimality of pursuit time.
@article{VSPUI_2022_18_3_a2,
     author = {E. M. Mukhsinov},
     title = {To the problem of the pursuit in quasilinear differential lag games},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {328--336},
     year = {2022},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a2/}
}
TY  - JOUR
AU  - E. M. Mukhsinov
TI  - To the problem of the pursuit in quasilinear differential lag games
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2022
SP  - 328
EP  - 336
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a2/
LA  - ru
ID  - VSPUI_2022_18_3_a2
ER  - 
%0 Journal Article
%A E. M. Mukhsinov
%T To the problem of the pursuit in quasilinear differential lag games
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2022
%P 328-336
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a2/
%G ru
%F VSPUI_2022_18_3_a2
E. M. Mukhsinov. To the problem of the pursuit in quasilinear differential lag games. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 3, pp. 328-336. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a2/

[1] Pontrjagin L. S., Boltyanskiy V. G., Gamkrelidze R. V., Mishenko E. F., Mathematical theory of optimal processes, Nauka Publ, M., 1983, 393 pp. (In Russian) | MR

[2] Balakrishnan A. V., Applied functional analysis, Nauka Publ, M., 1980, 384 pp. (In Russian) | MR

[3] Arguchinsev A. V., Srochko V. A., “Procedure for regularization of bilinear optimal control problems based on a finite-dimensional model”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18:1 (2022), 179–187 (In Russian) | DOI | MR

[4] Pontrjagin L. S., “Linear differential games of pursuit”, Mathematical collection, 112(154):3 (1980), 307–331 (In Russian) | MR

[5] Krasovskiy N. N., Subbotin A. I., Positional differential games, Nauka Publ, M., 1974, 456 pp. (In Russian) | MR

[6] Gustyanikov P. B., Nikolskiy M. S., “On the optimality of the pursuit time”, Proceedings of the USSR Academy of Sciences, 184:3 (1969), 518–521 (In Russian) | MR | Zbl

[7] Satimov N. Yu., Tukhtasinov M., “On game problems on a fixed interval in controlled first-order evolution equations”, Mathematical Notes, 80:4 (2006), 613–626 (In Russian) | Zbl

[8] Petrosyan L. A., Differential pursuit games, Leningrad State University Press, L., 1977, 222 pp. (In Russian) | MR

[9] Mamadaliev N., “On a pursuit problem with integral constraints on the players' controls”, Siberian Mathematical journal, 56:1 (2015), 129–148 (In Russian) | DOI | MR | Zbl

[10] Friedman A., “Differential games of purpsuit in Banach space”, Journal of Math. Analysis and Applications, 25 (1969), 93–113 | DOI | MR | Zbl

[11] Osipov Yu. S., “On the theory of differential games in systems with distributed parameters”, Proceedings of the USSR Academy of Sciences, 223:6 (1975), 1314–1317 (In Russian) | MR | Zbl

[12] Mukhsinov E. M., “On the optimality of pursuit time in differential games”, Managed systems (Novosibirsk), 1982, no. 2, 80–87 (In Russian) | Zbl

[13] Mukhsinov E. M., Murodova M. N., “The pursuit problem for a delayed differential game in an infinite-dimensional space”, Bulletin of the Tajik National University. Series of natural sciences, 2018, no. 3, 79–86 (In Russian)

[14] Hille E., Phillips R., Functional analysis and semi-groups, Colloquium Publ, New York, 1957, 819 pp. | MR | MR

[15] Nakagiri S., “Structural properties of functional differential equations in Banach spaces”, Journal of Math. Anal. Appl., 25 (1988), 353–398 | MR | Zbl

[16] Kantorovich L. V., Akilov G. P., Functional analysis, Nauka Publ, M., 1977, 744 pp. (In Russian) | MR

[17] Castaing C., Valadier M., “Convex analysis and measurable multifunctions”, Lecture Notes Math., 580, 1977, 1–278 | DOI | MR