@article{VSPUI_2022_18_3_a10,
author = {A. P. Zhabko and V. V. Provotorov and S. M. Sergeev},
title = {Stability of operator-difference schemes with weights for the hyperbolic equation in the space of summable functions with carriers in the network-like domain},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {425--437},
year = {2022},
volume = {18},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a10/}
}
TY - JOUR AU - A. P. Zhabko AU - V. V. Provotorov AU - S. M. Sergeev TI - Stability of operator-difference schemes with weights for the hyperbolic equation in the space of summable functions with carriers in the network-like domain JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2022 SP - 425 EP - 437 VL - 18 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a10/ LA - en ID - VSPUI_2022_18_3_a10 ER -
%0 Journal Article %A A. P. Zhabko %A V. V. Provotorov %A S. M. Sergeev %T Stability of operator-difference schemes with weights for the hyperbolic equation in the space of summable functions with carriers in the network-like domain %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2022 %P 425-437 %V 18 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a10/ %G en %F VSPUI_2022_18_3_a10
A. P. Zhabko; V. V. Provotorov; S. M. Sergeev. Stability of operator-difference schemes with weights for the hyperbolic equation in the space of summable functions with carriers in the network-like domain. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 3, pp. 425-437. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a10/
[1] Provotorov V. V., “Moment method in the problem of dampening oscillations of a differential system on a graph”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2010, no. 2, 60–69 (In Russian)
[2] Artemov M. A., Baranovskii E. S., Zhabko A. P., Provotorov V. V., “On a 3D model of non-isothermal flows in a pipeline network”, Journal of Physics. Conference Series, 1203 (2019), 012094 | DOI
[3] Provotorov V. V., “Construction of boundary controls in the problem of damping vibrations of a system of $M$ strings”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2012, no. 1, 60–69 (In Russian)
[4] Baranovskii E. S., Provotorov V. V., Artemov M. A., Zhabko A. P., “Non-isothermal creeping flows in a pipeline network: existence results”, Symmetry, 13 (2021), 1300 | DOI
[5] Samarskii A. A., Theory of difference schemes, Nauka Publ., M., 1973, 655 pp. (In Russian) | MR
[6] Zhabko A. P., Provotorov V. V., Shindyapin A. I., “Optimal control of a differential-difference parabolic system with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:4 (2021), 433–448 | DOI | MR
[7] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, Nauka Publ, M., 1973, 407 pp. (In Russian) | MR
[8] Provotorov V. V., Sergeev S. M., Hoang V. N., “Point control of a differential-difference system with distributed parameters on a graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:3 (2021), 277–286 | DOI | MR
[9] Volkova A. S., Provotorov V. V., “Generalized solutions and generalized eigenfunctions of boundary-value problems on a geometric graph”, Proceedings of Higher Educational institutions, 58:3 (2014), 1–13 | MR | Zbl
[10] Podvalny S. L., Provotorov V. V., “Determining the starting function in the task of observing the parabolic system with distributed parameters on the graph”, Vestnik of Voronezh State Technical University, 10:6 (2014), 29–35 (In Russian)
[11] Fominyh A. V., Karelin V. V., Polyakova L. N., Myshkov S. K., Tregubov V. P., “The codifferential descent method in the problem of finding the global minimum of a piecewise affine objective functional in linear control systems”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:1 (2021), 47–58 (In Russian) | DOI | MR
[12] Zhabko A. P., Provotorov V. V., Balaban O. R., “Stabilization of weak solutions of parabolic systems with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:2 (2019), 187–198 | DOI | MR
[13] Ekimov A. V., Zhabko A. P., Yakovlev P. V., “The stability of differential-difference equations with proportional time delay”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:3 (2020), 316–325 | DOI | MR
[14] Zhabko A. P., Nurtazina K. B., Provotorov V. V., “About one approach to solving the inverse problem for parabolic equation”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:3 (2019), 322–335 | DOI | MR
[15] Aleksandrov A. Yu., Tikhonov A. A., “Stability analysis of mechanical systems with distributed delay via decomposition”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:1 (2021), 13–26 (In Russian) | DOI | MR
[16] Provotorov V. V., “Mathematical modeling of oscillatory processes of supporting stretch marks of elastic mast”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2006, no. 2, 28–35 (In Russian)
[17] Karelin V. V., Bure V. M., Svirkin M. V., “The generalized model of information dissemination in continuous time”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:1 (2017), 74–80 (In Russian) | DOI | MR
[18] Kamachkin A. M., Potapov D. K., Yevstafyeva V. V., “Dynamics and synchronization in feedback cyclic structures with hysteresis oscillators”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:2 (2020), 186–199 (In Russian) | DOI | MR
[19] Daugavet V. A., Yakovlev P. V., “Mean square approximation of a rectangular matrix by matrices of lower rank”, Journal of Computational Mathematics and Mathematical Physics, 29:10 (1989), 1466–1479 (In Russian) | MR