On the determination of spacetime geometry
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 3, pp. 316-327 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new approach allowing to determine the metric tensor in various points of the spacetime is proposed. Such approach gives an opportunity to investigate the simultaneity of events not only locally, but also globally, without using of the synchronization procedure, traditionally applied in the theory of the spacetime. On the base of the method of simultaineity determination described in the article, it is possible to construct broad classes of reference frames. As an example, a reference frame is considered, all ovservers of which move with the same arbitrarily changing velocity along some direction.
Keywords: metric tensor, simultaneity, reference frame, accelerated reference frame.
@article{VSPUI_2022_18_3_a1,
     author = {O. I. Drivotin},
     title = {On the determination of spacetime geometry},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {316--327},
     year = {2022},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a1/}
}
TY  - JOUR
AU  - O. I. Drivotin
TI  - On the determination of spacetime geometry
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2022
SP  - 316
EP  - 327
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a1/
LA  - ru
ID  - VSPUI_2022_18_3_a1
ER  - 
%0 Journal Article
%A O. I. Drivotin
%T On the determination of spacetime geometry
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2022
%P 316-327
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a1/
%G ru
%F VSPUI_2022_18_3_a1
O. I. Drivotin. On the determination of spacetime geometry. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 3, pp. 316-327. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_3_a1/

[1] Vladimirov Yu. S., Reference frames in gravitation theory, Energoizdat Publ, M., 1982, 256 pp. (In Russian) | MR

[2] Sachs R. K., Wu H., General relativity for mathematicians, Springer, New York, 1977, 291 pp. | MR | Zbl

[3] Drivotin O.I., “Rigorous definition of the reference frame”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2014, no. 4, 25–36

[4] Lass H., “Accelerating frames of reference and the clock paradox”, American Journal of Physics, 31:4 (1963), 274–276 | DOI | MR

[5] Marsh L. McL., “Relativistic accelerated systems”, American Journal of Physics, 33:11 (1965), 934–938 | DOI

[6] Marzlin K. P., What is the reference frame of an accelerated observer?, Physics Letters A, 215 (1996), 1–6 | DOI

[7] Misner C. W., Thorn K. S., Wheeler J. A., Gravitation, Princeton University Press, Princeton, 2017, 1279 pp. | MR | Zbl

[8] Manasse F. K., Misner C. W., “Fermi normal coordinates and some basic concepts in differential geometry”, Journal of Mathematical Physics, 4:6 (1963), 735–745 | DOI | MR | Zbl

[9] Drivotin O. I., “On momentum flow density of the gravitational field”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:2 (2021), 137–147 (In Russian) | DOI | MR

[10] Drivotin O. I., Mathematical foundations of the field theory, St Petersburg University Press, St Petersburg, 2010, 168 pp. (In Russian)

[11] Podsosenov S. A., Foukzon J., Potapov A., Men'kova E., “Electrodynamics in noninertial reference frames”, Journal of Applied Mathematics and Physics, 4 (2016), 806–843 | DOI