Families of embedded methods of order six
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 2, pp. 285-296 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper embedded methods of order six, with seven stages for solving systems of ordinary differential equations, are derived. A family of Runge — Kutta methods, of order six with seven stages and having three free parameters, is presented. This family is extended in two different ways with embedded methods to form families of embedded method pairs. Numerical comparison is given for certain examples of the embedded pairs from the constructed families.
Keywords: Cauchy problem, embedded methods, error control, order, stage, order conditions, simplifying conditions.
@article{VSPUI_2022_18_2_a8,
     author = {I. V. Olemskoy and O. S. Firyulina and O. A. Tumka},
     title = {Families of embedded methods of order six},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {285--296},
     year = {2022},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a8/}
}
TY  - JOUR
AU  - I. V. Olemskoy
AU  - O. S. Firyulina
AU  - O. A. Tumka
TI  - Families of embedded methods of order six
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2022
SP  - 285
EP  - 296
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a8/
LA  - ru
ID  - VSPUI_2022_18_2_a8
ER  - 
%0 Journal Article
%A I. V. Olemskoy
%A O. S. Firyulina
%A O. A. Tumka
%T Families of embedded methods of order six
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2022
%P 285-296
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a8/
%G ru
%F VSPUI_2022_18_2_a8
I. V. Olemskoy; O. S. Firyulina; O. A. Tumka. Families of embedded methods of order six. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 2, pp. 285-296. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a8/

[1] Arushanyan O. B., Zaletkin S. F., Numerical solution of ordinary differential equations on Fortran, Moscow University Press, M., 1990, 336 pp. (In Russian) | MR

[2] Hairer E., Norsett S., Wanner G., Solving ordinary differential equations, v. I, Nonstiff problems, Ed. 3, Springer-Verlag Publ., Berlin–Heidelberg, 2008, 528 pp. | MR | MR

[3] Fehlberg E., “Classical fifth-, sixth-, seventh-, and eighth order Runge — Kutta formulas with step size control. 1968. NASA Technical Report No 287”, Computing, 4 (1969), 93–106 | DOI | MR | Zbl

[4] Butcher J. C., “Coefficients for the study of Runge — Kutta integration processes”, Journal of the Australian Mathematical Society, 3 (1963), 185–201 | DOI | MR | Zbl

[5] Butcher J. C., “On Runge — Kutta processes of high order”, Journal of the Australian Mathematical Society, 4 (1964), 179–194 | DOI | MR | Zbl

[6] Dormand J. R., Prince P. J., “A family of embedded Runge — Kutta formulae”, Journal of Computational and Applied Mathematics, 6:1 (1980), 19–26 | DOI | MR | Zbl

[7] Dormand J. R., Prince P. J., “High order embedded Runge — Kutta formulae”, Journal of Computational and Applied Mathematics, 7:1 (1981), 67–75 | MR | Zbl

[8] Olemskoy I. V., Eremin A. S., “Algorithm of construction of effective explicit methods for structurally partitioned systems of ordinary differential equations”, Vestnik of Saint Petersburg Universitety. Applied Mathematics. Computer Sciences. Control Processes, 17:4 (2021), 353–369 | DOI | MR

[9] Eremin A. S., Kovrizhnykh N. A., Olemskoy I. V., “An explicit one-step multischeme sixth order method for systems of special structure”, Applied Mathematics and Computation, 347 (2019), 853–864 | DOI | MR | Zbl

[10] Olemskoy I. V., Kovrizhnykh N. A., “A family of sixth-order methods with six stages”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 14:3 (2018), 215–229 (In Russian) | DOI | MR

[11] Olemskoy I. V., Kovrizhnykh N. A., Firyulina O. S., “Two-parametric family of sixth order numerical methods for solving systems of ordinary differential equations”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 15:4 (2019), 502–517 (In Russian) | DOI | DOI | MR