@article{VSPUI_2022_18_2_a7,
author = {A. P. Zhabko and N. A. Zhabko and P. V. Yakovlev},
title = {Zubov's optimum damping method in the control problem of one gyroscope system},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {278--284},
year = {2022},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a7/}
}
TY - JOUR AU - A. P. Zhabko AU - N. A. Zhabko AU - P. V. Yakovlev TI - Zubov's optimum damping method in the control problem of one gyroscope system JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2022 SP - 278 EP - 284 VL - 18 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a7/ LA - ru ID - VSPUI_2022_18_2_a7 ER -
%0 Journal Article %A A. P. Zhabko %A N. A. Zhabko %A P. V. Yakovlev %T Zubov's optimum damping method in the control problem of one gyroscope system %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2022 %P 278-284 %V 18 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a7/ %G ru %F VSPUI_2022_18_2_a7
A. P. Zhabko; N. A. Zhabko; P. V. Yakovlev. Zubov's optimum damping method in the control problem of one gyroscope system. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 2, pp. 278-284. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a7/
[1] Jie M., Qinbei X., “Four-axis gimbal system application based on gimbal self-adaptation adjustment”, Proceedings of the $34^{\rm th}$ Chinese Control Conference (Hangzhou, China. July 28–30, 2015), 8866–8871
[2] McConnel K. G., “Kinematic of three-axis gimbal system”, Proceedings of the Third Southeastern Conference on Theoretical and Applied Mechanics (S. Carolina, Columbia. March 31 — April 01, 1966), 515–541
[3] Veremey E. I., “On practical application of Zubov's optimal damping concept”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 16:3 (2020), 293–315 | DOI | MR
[4] Zubov V. I., Lectures on control theory, Nauka Publ, M., 1975, 496 pp. (In Russian)
[5] Ekimov A. V., Zhabko A. P., Yakovlev P. V., “The stability of differential-difference systems with proportional time delay. I. Linear controlled systems”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 16:3 (2020), 316–325 (In Russian) | DOI | MR