An epidemic model of malaria without and with vaccination. Pt 1. A model of malaria without vaccination
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 2, pp. 263-277
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a mathematical model of the malaria epidemic in the human population (host), where the transmission of the disease is produced by a vector population (mosquito) known as the malaria mosquito. The malaria epidemic model is defined by a system of ordinary differential equations. The host population at any time is divided into four sub-populations: susceptible, exposed, infectious, recovered. Sufficient conditions for stability of equilibrium without disease and endemic equilibrium are obtained using the Lyapunov's function theory. We define the reproductive number characterizing the level of disease spreading in the human population. Numerical modeling is made to study the influence of parameters on the spread of vector-borne disease and to illustrate theoretical results, as well as to analyze possible behavioral scenarios.
Keywords: epidemic model, modification epidemic SEIR model, reproductive number, endemic equilibrium.
Mots-clés : human population, malaria, sub-populations
@article{VSPUI_2022_18_2_a6,
     author = {S. M. Ndiaye and E. M. Parilina},
     title = {An epidemic model of malaria without and with vaccination. {Pt} 1. {A} model of malaria without vaccination},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {263--277},
     year = {2022},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a6/}
}
TY  - JOUR
AU  - S. M. Ndiaye
AU  - E. M. Parilina
TI  - An epidemic model of malaria without and with vaccination. Pt 1. A model of malaria without vaccination
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2022
SP  - 263
EP  - 277
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a6/
LA  - ru
ID  - VSPUI_2022_18_2_a6
ER  - 
%0 Journal Article
%A S. M. Ndiaye
%A E. M. Parilina
%T An epidemic model of malaria without and with vaccination. Pt 1. A model of malaria without vaccination
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2022
%P 263-277
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a6/
%G ru
%F VSPUI_2022_18_2_a6
S. M. Ndiaye; E. M. Parilina. An epidemic model of malaria without and with vaccination. Pt 1. A model of malaria without vaccination. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 2, pp. 263-277. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a6/

[1] Chang S. L., Piraveenan M., Pattison P., Prokopenko M., “Game theoretic modelling of infectious disease dynamics and intervention methods”, Journal of Biological Dynamic, 2020, 57–89 | DOI | MR | Zbl

[2] Sokolov S. V., Sokolova A. L., “HIV incidence in Russia: SIR epidemic model-based analysis”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:4 (2019), 616–623 | DOI | MR

[3] Zakharov V. V., Balykina Yu. E., “Predicting the dynamics of the coronavirus (COVID-19) epidemic based on the case-based reasoning approach”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:3 (2020), 249–259 (In Russian) | DOI

[4] Smith D. L., Battle K. E., Hay S. I., Barker C. M., Scott T. W., McKenzie F. E., “Ross, McDonald, and a theory for the dynamics and control of mosquito-transmitted pathogens”, PLoS Pathog, 8:4 (2012), e1002588. | DOI

[5] McDonald G., “Epidemiological basis of malaria control”, Bull. World Health Organ, 15:3–5 (1956), 613–626

[6] Feng Z., Hernandez V., “Competitive exclusion in a vector-host model for the dengue fever”, Math. Biol., 1997, 523–544 | DOI | MR | Zbl

[7] Qiu Z., “Dynamical behavior of a vector-host epidemic model with demographic structure”, Computers $\$ Mathematics with Applications, 56:12 (2008), 3118–3129 | DOI | MR | Zbl

[8] Sirbu A., Lorento V., Servedio V., Tria F., “Opinion dynamics: models, extensions and external effects”, Physics and Society, 5 (2016), 363–401

[9] Bushman M., Antia R., Udhayakumar V., de Roode J. C., “Within-host competition can delay evolution of drug resistance in malaria”, PLoS Biol, 16:8 (2018), e2005712 | DOI

[10] Turner A., Jung C., Tan P., Gotika S., Mago V., “A comprehensive model of spread of malaria in humans and mosquitos”, SoutheastCon, 2015, 1–6 | DOI

[11] Hong H., Wang N., Yang J., “Implications of stochastic transmission rates for managing pandemic risks”, Rev. Financ. Stud., 2021 | DOI

[12] Gómez-Hernández E. A., Ibargüen-Mondragón E., “A two patch model for the population dynamics of mosquito-borne diseases”, J. Phys.: Conference Series, 1408:1 (2019), 012002 | DOI

[13] Kamgang J. C., Thron C. P., “Analysis of malaria control measures' effectiveness using multistage vector model”, Bull. Math. Biol., 81 (2019), 4366–4411 | DOI | MR | Zbl

[14] Aleksandrov A. Yu., “Permanence conditions for models of population dynamics with switches and delay”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:2 (2020), 88–99 (In Russian) | DOI | MR

[15] Wiwanitkit V., “Unusual mode of transmission of dengue”, J. Infect. Dev. Ctries, 4 (2009), 051–054 | DOI

[16] Ndiaye S. M., Lam M., Mansal F., “Modélisation d'un système de pêcherie avec maladie”, Bachelor Thesis, 2017, 3–10 | Zbl

[17] Aldila D., Seno H. A., “Population dynamics model of mosquito-borne disease transmission, focusing on mosquitoes' biased distribution and mosquito repellent use”, Bull. Math. Biol., 81 (2019), 4977–5008 | DOI | MR | Zbl

[18] Lipsitch M., Cohen T., Cooper B., Robins J. M., Ma S., James L., Gopalakrishna G., Chew S. K., Tan C. C., Samore M. H., Fisman D., Murray M., “Transmission dynamics and control of severe acute respiratory syndrome”, Science, 300 (2003), 1966–1970 | DOI

[19] Britton T., “Stochastic epidemic models: A survey”, Mathematical Biosciences, 225:1 (2010), 24–35 | DOI | MR | Zbl

[20] Lashari A. A., Zaman G., “Global dynamics of vector-borne diseases with horizontal transmission in host population”, Computers $\$ Mathematics with Applications, 61:4 (2011), 745–754 | DOI | MR | Zbl

[21] Arquam M., Anurag S., Cherifi H., “Impact of seasonal conditions on vector-borne epidemiological dynamics”, IEEE Access, 8 (2020), 94510–94525 | DOI

[22] Kim M., Paini D., Jurdak R., “Modeling stochastic processes in disease spread across a heterogeneous social system”, Proceedings of the National Academy of Sciences, 116:2 (2019), 401–406 | DOI

[23] Derdei B., “Étude de modèles épidémiologiques: Stabilité, observation et estimation de paramètres”, HAL theses, 2013, 7–11 (accessed: April 15, 2022) https://tel.archives-ouvertes.fr/tel-00841444/file/BicharaPhDThesis.pdf

[24] Hyman J. M., Li J., “An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations”, Mathematical Biosciences, 167:1 (2000), 65–86 | DOI | Zbl