Impact of collisions on the dynamics of waves of finite amplitude in a plasma
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 2, pp. 231-238 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of determining wave dynamics, considering the evolution of nonlinear waves of finite amplitude in a weakly collisional, Maxwellian plasma, is the focus of this article. Considering this medium with a certain interaction potential associated with a certain limited core of pairwise interaction, the dynamics of the distribution function was studied using the Vlasov equation. Collisions of electrons with neutral particles are described using the collision integral in the Bhatnagar — Gross — Krook form. Having constructed its particular solution and the equilibrium distribution function in the form of a series, an equation was obtained that makes it possible to determine the potential function. Considering the case of a Maxwellian plasma, an integral potential equation was obtained. Based on it, an equation was constructed that determines the perturbation of the potential relative to the spatially homogeneous one. At the same time, this perturbation appears due to the existence of some spatial-temporal stable structure. Based on this, a dispersion relation was obtained, which makes it possible to estimate the spatial scales of the coherent structure.
Keywords: nonideal plasma, weak collisions, coherent structures, waves of finite amplitude.
@article{VSPUI_2022_18_2_a3,
     author = {A. R. Karimov and V. K. Bogdanov},
     title = {Impact of collisions on the dynamics of waves of finite amplitude in a plasma},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {231--238},
     year = {2022},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a3/}
}
TY  - JOUR
AU  - A. R. Karimov
AU  - V. K. Bogdanov
TI  - Impact of collisions on the dynamics of waves of finite amplitude in a plasma
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2022
SP  - 231
EP  - 238
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a3/
LA  - ru
ID  - VSPUI_2022_18_2_a3
ER  - 
%0 Journal Article
%A A. R. Karimov
%A V. K. Bogdanov
%T Impact of collisions on the dynamics of waves of finite amplitude in a plasma
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2022
%P 231-238
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a3/
%G ru
%F VSPUI_2022_18_2_a3
A. R. Karimov; V. K. Bogdanov. Impact of collisions on the dynamics of waves of finite amplitude in a plasma. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 2, pp. 231-238. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a3/

[1] Fainberg Ja. B., “Acceleration of particles in plasma”, Atomic Energy, 6:4 (1959), 431–446 (In Russian)

[2] Ashanin I. A., Klyuchevskaya Yu. D., Makhoro A. A., Mekhanikova V. Yu., Mosolova O. A., Polozov S. M., Pronikov A. I., Rashchikov V. I., “Beam dynamics in the linear accelerator-injector of the Specialized source of synchrotron radiation of the $4^{\rm th}$ generation ISSI-4”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:1 (2019), 126–139 (In Russian) | DOI

[3] Kadomtsev B. B., “Landau damping and echo in plasma”, Successes of Physical Sciences, 95:1 (1968), 111–129 (In Russian) | MR

[4] Schamel H., “Hole equilibria in Vlasov — Poisson systems: A challenge to wave theories of ideal plasmas”, Phys. Plasmas, 7:12 (2000), 4831–4844 | DOI | MR

[5] Ovsyannikov D. A., Drivotin O. I., Simulation of intense beams of charged particles, St Petersburg State University Press, St Petersburg, 2003, 176 pp. (In Russian)

[6] Diamond P. H., Itoh S.-I., Itoh K., Hahm T. S., “Zonal flows in plasma — a review”, Plasma Phys. Control. Fusion, 47:5 (2005), R35–R161 | DOI

[7] Rowlands G., Dieckmann M. E., Shukla P. K., “The plasma filamentation instability in one dimension: nonlinear evolution”, New J. Phys., 9:8 (2007), 247 | DOI

[8] Polozov S. M., “A possible scheme of electron beam bunching in laser plasma accelerators”, NIM A, 729:11 (2013), 517–521 | DOI

[9] Roudskoy I., Kulevoy T. V., Petrenko S. V., Kuibeda R. P., Seleznev D. N., Pershin V. I., Hershcovitch A., Johnson B. M., Gushenets V. I., Oks E. M., Poole H. P., “Bernas ion source discharge simulation”, Review of Scientific Instruments, 79:2 (2008), 02B313 | DOI

[10] Potanin E. P., “Heating of gadolinium plasma ions by the ion cyclotron resonance method”, Journal of Technical Physics, 76:12 (2006), 47–51 (In Russian)

[11] Van Kampen N. G., “On the theory of stationary waves in plasmas”, Physica, 21 (1955), 949–963 | DOI | MR

[12] Case K. M., “Plasma oscillations”, Ann. Phys., 7:3 (1959), 349–364 | DOI | MR | Zbl

[13] Bernstein I. B., Greene J. M., Kruskal M. D., “Exact nonlinear plasma oscillations”, Phys. Rev., 108:3 (1957), 546–549 | DOI | MR

[14] Villani C., “Particle systems and nonlinear Landau damping”, Phys. Plasmas, 21:3 (2014), 030901 | DOI

[15] Kaganovich I. D., “Effects of collisions and particle trapping on collisionless heating”, Phys. Rev., 88:2 (1999), 327–330

[16] Zheng J., Qin H., “On the singularity of the Vlasov — Poisson system”, Phys. Plasmas, 20:9 (2013), 092114 | DOI

[17] Karimov A. R., Lewis H. R., “Nonlinear solutions of the Vlasov — Poisson equations”, Phys. Plasmas, 6:3 (1999), 759–761 | DOI | MR

[18] Karimov A. R., “Nonlinear solutions of a Maxwellian type for the Vlasov — Poisson equations”, Phys. Plasmas, 8:5 (2001), 1533–1537 | DOI | MR

[19] Karimov A. R., Bogdanov V. K., “Formation of kinetics coherent structures in weakly collisional media”, Plasma, 4:2 (2021), 359–365 | DOI

[20] Vlasov A. A., Nonlocal statistical mechanics, Nauka Publ, M., 1978, 264 pp. (In Russian) | MR