Structure of a $4$-dimensional algebra and generating parameters of the hidden discrete logarithm problem
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 2, pp. 209-217 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Structure of a $4$-dimensional algebra and generating parameters of the hidden discrete logarithm problem the field $GF(p)$ is studied in connection with using it as algebraic support of the hidden discrete logarithm problem that is an attractive primitive of post-quantum signature schemes. It is shown that each invertible $4$-dimensional vector that is not a scalar vector is included in a unique commutative group representing a subset of algebraic elements. Three types of commutative groups are contained in the algebra and formulas for computing the order and the number of groups are derived for each type. The obtained results are used to develop algorithms for generating parameters of digital signature schemes based on computational difficulty of the hidden logarithm problem.
Keywords: digital signature, post-quantum cryptoscheme, hidden logarithm problem, finite non-commutative algebra, associative algebra, cyclic group.
@article{VSPUI_2022_18_2_a1,
     author = {N. A. Moldovyan and A. A. Moldovyan},
     title = {Structure of a $4$-dimensional algebra and generating parameters of the hidden discrete logarithm problem},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {209--217},
     year = {2022},
     volume = {18},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a1/}
}
TY  - JOUR
AU  - N. A. Moldovyan
AU  - A. A. Moldovyan
TI  - Structure of a $4$-dimensional algebra and generating parameters of the hidden discrete logarithm problem
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2022
SP  - 209
EP  - 217
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a1/
LA  - en
ID  - VSPUI_2022_18_2_a1
ER  - 
%0 Journal Article
%A N. A. Moldovyan
%A A. A. Moldovyan
%T Structure of a $4$-dimensional algebra and generating parameters of the hidden discrete logarithm problem
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2022
%P 209-217
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a1/
%G en
%F VSPUI_2022_18_2_a1
N. A. Moldovyan; A. A. Moldovyan. Structure of a $4$-dimensional algebra and generating parameters of the hidden discrete logarithm problem. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 2, pp. 209-217. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a1/

[1] “Post-quantum cryptography”, $10^{\scriptsize th}$ International Conference, PQCrypto 2019 (Chongqing, China, May 8–10, 2019), Lecture Notes in Computer Science series, 11505, Springer Publ., Cham, 2019, 1–269

[2] Shor P. W., “Polynomial-time algorithms for prime factorization and discrete logarithms on quantum computer”, SIAM Journal of Computing, 26 (1997), 1484–1509 | DOI | MR | Zbl

[3] Jozsa R., “Quantum algorithms and the fourier transform”, Proc. Roy. Soc. London. Series A, 454 (1998), 323–337 | DOI | MR | Zbl

[4] Yan S. Y., Quantum attacks on public-key cryptosystems, Springer Publ, Boston, 2013, 207 pp. | Zbl

[5] Moldovyan D. N., “New form of the hidden logarithm problem and its algebraic support”, Bulletin of Academy of Sciences of Moldova. Mathematics, 2020, no. 2(93), 3–10 | MR | Zbl

[6] Moldovyan N. A., Moldovyan A. A., “Candidate for practical post-quantum signature scheme”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:4 (2020), 455–461 | DOI | MR

[7] Moldovyan D. N., “Post-quantum public key-agreement scheme based on a new form of the hidden logarithm problem”, Computer Science Journal of Moldova, 27:1(79) (2019), 56–72 | MR | Zbl

[8] Moldovyan A. A., Moldovyan D. N., Moldovyan N. A., “Post-quantum commutative encryption algorithm”, Computer Science Journal of Moldova, 27:3(81) (2019), 299–317 | MR | Zbl

[9] Moldovyan D. N., “A unified method for setting finite non-commutative associative algebras and their properties”, Quasigroups and Related Systems, 27:2 (2019), 293–308 | MR | Zbl

[10] Moldovyan D. N., Moldovyan A. A., Moldovyan N. A., “Post-quantum signature schemes for efficient hardware implementation”, Microprocessors and Microsystems, 80 (2021), 103487 | DOI

[11] Moldovyan N. A., Moldovyanu P. A., “New primitives for digital signature algorithms”, Quasigroups and Related Systems, 17:2 (2009), 271–282 | MR | Zbl

[12] Moldovyan D. N., Moldovyan A. A., Moldovyan N. A., “A new concept for designing post-quantum digital signature algorithms on non-commutative algebras”, Cibersecurity questions, 2022, no. 1(47), 18–25 | DOI | MR

[13] Shuaiting Q., Wenbao H., Yifa Li, Luyao J., “Construction of extended multivariate public key cryptosystems”, International Journal of Network Security, 18:1 (2016), 60–67

[14] Jintai D., Dieter S., Multivariable public key cryptosystems, , 2004 (accessed: February 24, 2022) https://eprint.iacr.org/2004/350.pdf