Research of the asymptotic equilibrium of time-delay systems by junction of Lyapunov — Krasovskii and Razumikhin approaches
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 2, pp. 198-208
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nonlinear time-delay systems are considered and the limiting behavior of their solutions is investigated. The case in which the solutions have a trivial equilibrium that may not be an invariant set of the system is studied. The junction of Lyapunov — Krasovskii and Razumikhin approaches is applied to obtain sufficient conditions for the existence of an asymptotic quiescent position in the large. In the case when a general system has a trivial solution, new sufficient conditions for its asymptotic stability are obtained. Examples, that illustrate the application of the obtained results, are given.
Keywords: time-delay systems, asymptotic stability, asymptotic quiescent position, Lyapunov — Krasovskii functionals.
@article{VSPUI_2022_18_2_a0,
     author = {S. E. Kuptsova and S. Yu. Kuptsov},
     title = {Research of the asymptotic equilibrium of time-delay systems by junction of {Lyapunov} {\textemdash} {Krasovskii} and {Razumikhin} approaches},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {198--208},
     year = {2022},
     volume = {18},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a0/}
}
TY  - JOUR
AU  - S. E. Kuptsova
AU  - S. Yu. Kuptsov
TI  - Research of the asymptotic equilibrium of time-delay systems by junction of Lyapunov — Krasovskii and Razumikhin approaches
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2022
SP  - 198
EP  - 208
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a0/
LA  - en
ID  - VSPUI_2022_18_2_a0
ER  - 
%0 Journal Article
%A S. E. Kuptsova
%A S. Yu. Kuptsov
%T Research of the asymptotic equilibrium of time-delay systems by junction of Lyapunov — Krasovskii and Razumikhin approaches
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2022
%P 198-208
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a0/
%G en
%F VSPUI_2022_18_2_a0
S. E. Kuptsova; S. Yu. Kuptsov. Research of the asymptotic equilibrium of time-delay systems by junction of Lyapunov — Krasovskii and Razumikhin approaches. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 2, pp. 198-208. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_2_a0/

[1] Krasovskii N. N., Some problems in the theory of motion stability, Fizmatlit Publ., M., 1959, 211 pp. (In Russian) | MR

[2] Alexandrova I. V., Zhabko A. P., “Lyapunov — Krasovskii functionals for homogeneous systems with multiple delays”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:2 (2021), 183–195 (In Russian) | DOI | MR

[3] Razumikhin B. S., “On stability of delayed systems”, J. Appl. Math. Mech., 56:2 (1956), 500–512 | MR

[4] Razumikhin B. S., “The application of Lyapunov's method to problems in the stability of systems with delay”, Autom. Remote Control, 21:6 (1960), 740–748 | MR | Zbl

[5] Medvedeva I. V., Zhabko A. P., “Synthesis of Razumikhin and Lyapunov — Krasovskii approaches to stability analysis of time-delay systems”, Automatica, 51:1 (2015), 372–377 | DOI | MR | Zbl

[6] Alexandrova I. V., Zhabko A. P., “At the junction of Lyapunov — Krasovskii and Razumikhin approaches”, IFAC-PapersOnLine, 15 Jul 2018 | DOI | MR

[7] Alexandrova I. V., Zhabko A. P., “Lyapunov direct method for homogeneous time delay systems”, IFAC-PapersOnLine, 15 Dec 2019 | DOI

[8] Zubov V. I., Oscillations and waves, Leningrad State University Press, L., 1989, 416 pp. (In Russian) | MR | Zbl

[9] Kuptsova S. E., “Asymptotically invariant sets”, Proceedings 37$^{th}$ Intern. Conference “Control Processes and Stability”, 2006, 50–56 (In Russian)

[10] Kuptsova S. E., “On asymptotic behavior of the solutions of systems of nonlinear time-varying differential equations”, Middle Volga Mathematical Society Journal, 8:1 (2006), 235–243

[11] Zhabko A. P., Tikhomirov O. G., Chizhova O. N., “Stability of asymptotic equilibrium of perturbed homogeneous time-varying systems”, Middle Volga Mathematical Society Journal, 20:1 (2018), 13–22 (In Russian) | Zbl

[12] Kuptsova S. E., Kuptsov S. Yu., Stepenko N. A., “On the limiting behavior of the solutions of systems of differential equations with delayed argument”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:2 (2018), 173–182 (In Russian) | DOI | MR

[13] Zaranik U. P., Kuptsova S. E., Stepenko N. A., “Sufficient conditions for the existence of an asymptotic quiescent position in time-delay systems”, Middle Volga Mathematical Society Journal, 20:2 (2018), 175–186 (In Russian) | Zbl

[14] Kuptsova S. E., Stepenko N. A., Kuptsov S. Yu., “Sufficient conditions for the existence of asymptotic quiescent position for one class of differential-difference systems”, Automation and Remote Control, 80 (2019), 1016–1025 | DOI | MR | Zbl

[15] Kharitonov V. L., Time-delay systems: Lyapunov functionals and matrices, Birkhäuser, Basel, 2013, 322 pp. | MR | Zbl