On the effective elastic properties of a material with mutually perpendicular systems of parallel cracks
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 1, pp. 111-119
Voir la notice de l'article provenant de la source Math-Net.Ru
The effective properties of cracked solids are often expressed in terms of the crack density parameter or its tensor generalization, using the approximation of noninteracting cracks. This approximation remains accurate at sufficiently high crack densities, provided the location of cracks are random. The presented analysis confirms that the effective elastic moduli of a material with ordered fracture structures strongly depend on the linear dimensions of cracks and their mutual arrangement even at a constant crack density. A change in these parameters can cause a noticeable anisotropy of the effective properties of the material even when the eigenvalues of the crack density tensor are equal to each other. The effective elastic characteristics of a material with one doubly periodic system of parallel cracks are compared with those for a material with two mutually perpendicular systems of such cracks in a two-dimensional formulation. The calculations are carried out using the approximate method of M. Kachanov for determining the mean stresses at the cracks edges, applicable for large systems of interacting cracks. Analysis of the obtained results showed that the effective compliance of the material in a certain direction is largely determined by the effects of interaction (shielding and amplification) within a system of parallel cracks perpendicular to this direction. The interaction of this system of cracks with the perpendicular system has a weak effect on the indicated properties in the case of rectangular symmetry of the system. In this case, the interaction of mutually perpendicular systems of cracks leads to a violation of the symmetry of the tensor of effective elastic constants.
Keywords:
crack density, crack interaction, effective elastic properties.
@article{VSPUI_2022_18_1_a8,
author = {A. M. Abakarov and Yu. G. Pronina},
title = {On the effective elastic properties of a material with mutually perpendicular systems of parallel cracks},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {111--119},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a8/}
}
TY - JOUR AU - A. M. Abakarov AU - Yu. G. Pronina TI - On the effective elastic properties of a material with mutually perpendicular systems of parallel cracks JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2022 SP - 111 EP - 119 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a8/ LA - ru ID - VSPUI_2022_18_1_a8 ER -
%0 Journal Article %A A. M. Abakarov %A Yu. G. Pronina %T On the effective elastic properties of a material with mutually perpendicular systems of parallel cracks %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2022 %P 111-119 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a8/ %G ru %F VSPUI_2022_18_1_a8
A. M. Abakarov; Yu. G. Pronina. On the effective elastic properties of a material with mutually perpendicular systems of parallel cracks. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 1, pp. 111-119. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a8/