On the convergence of dynamic quasi-periodic systems
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 1, pp. 79-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The convergence problem for non-autonomous systems of differential equations with a quasi-periodic right-hand side in an independent argument is considered. It is proposed to replace the consideration of the set of solutions of the system of differential equations under consideration by considering the movements of a dynamic quasi-periodic system generated by these differential equations. Necessary and sufficient conditions are obtained when a dynamic quasi-periodic system has the convergence property, and a proof is given.
Mots-clés : convergence
Keywords: dynamic quasi-periodic system, quasi-periodic motion.
@article{VSPUI_2022_18_1_a5,
     author = {S. A. Strekopytov and M. V. Strekopytova},
     title = {On the convergence of dynamic quasi-periodic systems},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {79--86},
     year = {2022},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a5/}
}
TY  - JOUR
AU  - S. A. Strekopytov
AU  - M. V. Strekopytova
TI  - On the convergence of dynamic quasi-periodic systems
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2022
SP  - 79
EP  - 86
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a5/
LA  - ru
ID  - VSPUI_2022_18_1_a5
ER  - 
%0 Journal Article
%A S. A. Strekopytov
%A M. V. Strekopytova
%T On the convergence of dynamic quasi-periodic systems
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2022
%P 79-86
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a5/
%G ru
%F VSPUI_2022_18_1_a5
S. A. Strekopytov; M. V. Strekopytova. On the convergence of dynamic quasi-periodic systems. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 1, pp. 79-86. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a5/

[1] Birkhoff G., Dynamical systems, Udmurtskiy University Press, Ijevsk, 1999, 408 pp. (In Russian)

[2] Zubov V. I., Oscillations in nonlinear and controlled systems, Sudpromgiz Publ., L., 1962, 632 pp. (In Russian)

[3] Zubov V. I., Oscillations and waves, Leningrad University Press, L., 1989, 416 pp. (In Russian) | MR

[4] Pliss V. A., Nonlocal problems of the theory of oscillations, Nauka Publ, M., 1964, 368 pp. (In Russian)

[5] Pliss V. A., Integral sets of periodic systems of differential equations, Nauka Publ, M., 1977, 304 pp. (In Russian)

[6] Yakubovich V. A., Starzhinskii V. M., Linear differential equation with periodic coefficients and applications, Nauka Publ., M., 1972, 720 pp. (In Russian) | MR

[7] Levitan B., Zhikov V., Almost periodic functions and differential equations, Cambridge University Press, New York, 1982, 211 pp. | MR | Zbl

[8] Kosov A. A., “Investigation of convergence of large scale almost periodic systems by means of comparison vector functions with components as forms of even degrees”, Russian Mathematics, 59:7 (2015), 25–35 (In Russian) | MR | Zbl

[9] Kosov A. A., Shchennikov V. N., “On the convergence phenomenon in complex almost periodic systems”, Differential Equations, 50:12 (2014), 1573–1583 | DOI | MR | Zbl

[10] Aleksandrov A., Aleksandrova E., “Convergence conditions for some classes of nonlinear systems”, Systems $\$ Control Letters, 104 (2017), 72–77 | DOI | MR | Zbl

[11] Strekopytov S. A., Theory of quasi-periodic systems, VVM Publ, St Petersburg, 2014, 157 pp. (In Russian)

[12] Ataeva N. N., “Property of convergence for difference systems”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2004, no. 4, 91–98 (In Russian)

[13] Ekimov A. V., Zhabko A. P., Yakovlev P. V., “The stability of differential-difference equations with proportional time delay”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:3 (2020), 316–325 (In Russian) | DOI | MR