Keywords: dynamic quasi-periodic system, quasi-periodic motion.
@article{VSPUI_2022_18_1_a5,
author = {S. A. Strekopytov and M. V. Strekopytova},
title = {On the convergence of dynamic quasi-periodic systems},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {79--86},
year = {2022},
volume = {18},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a5/}
}
TY - JOUR AU - S. A. Strekopytov AU - M. V. Strekopytova TI - On the convergence of dynamic quasi-periodic systems JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2022 SP - 79 EP - 86 VL - 18 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a5/ LA - ru ID - VSPUI_2022_18_1_a5 ER -
%0 Journal Article %A S. A. Strekopytov %A M. V. Strekopytova %T On the convergence of dynamic quasi-periodic systems %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2022 %P 79-86 %V 18 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a5/ %G ru %F VSPUI_2022_18_1_a5
S. A. Strekopytov; M. V. Strekopytova. On the convergence of dynamic quasi-periodic systems. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 1, pp. 79-86. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a5/
[1] Birkhoff G., Dynamical systems, Udmurtskiy University Press, Ijevsk, 1999, 408 pp. (In Russian)
[2] Zubov V. I., Oscillations in nonlinear and controlled systems, Sudpromgiz Publ., L., 1962, 632 pp. (In Russian)
[3] Zubov V. I., Oscillations and waves, Leningrad University Press, L., 1989, 416 pp. (In Russian) | MR
[4] Pliss V. A., Nonlocal problems of the theory of oscillations, Nauka Publ, M., 1964, 368 pp. (In Russian)
[5] Pliss V. A., Integral sets of periodic systems of differential equations, Nauka Publ, M., 1977, 304 pp. (In Russian)
[6] Yakubovich V. A., Starzhinskii V. M., Linear differential equation with periodic coefficients and applications, Nauka Publ., M., 1972, 720 pp. (In Russian) | MR
[7] Levitan B., Zhikov V., Almost periodic functions and differential equations, Cambridge University Press, New York, 1982, 211 pp. | MR | Zbl
[8] Kosov A. A., “Investigation of convergence of large scale almost periodic systems by means of comparison vector functions with components as forms of even degrees”, Russian Mathematics, 59:7 (2015), 25–35 (In Russian) | MR | Zbl
[9] Kosov A. A., Shchennikov V. N., “On the convergence phenomenon in complex almost periodic systems”, Differential Equations, 50:12 (2014), 1573–1583 | DOI | MR | Zbl
[10] Aleksandrov A., Aleksandrova E., “Convergence conditions for some classes of nonlinear systems”, Systems $\$ Control Letters, 104 (2017), 72–77 | DOI | MR | Zbl
[11] Strekopytov S. A., Theory of quasi-periodic systems, VVM Publ, St Petersburg, 2014, 157 pp. (In Russian)
[12] Ataeva N. N., “Property of convergence for difference systems”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2004, no. 4, 91–98 (In Russian)
[13] Ekimov A. V., Zhabko A. P., Yakovlev P. V., “The stability of differential-difference equations with proportional time delay”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:3 (2020), 316–325 (In Russian) | DOI | MR