Quality criteria for control of epidemic process
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 1, pp. 149-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The total number of those infected at the end of an epidemic and the maximum number of infected during an epidemic are considered as two quality criteria for control by delayed isolation of the SIR- and SIRS-type infections. The temporal Barabasi — Albert graph is used to model the contacts between individuals. Simulations are run to estimate optimal delays.
Keywords: delayed isolation, control of epidemics, temporal Barabasi — Albert graph, total number of infected, maximum number of infected, temporal network.
Mots-clés : SIR, SIRS
@article{VSPUI_2022_18_1_a11,
     author = {S. E. Miheev and V. S. Mikheev},
     title = {Quality criteria for control of epidemic process},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {149--162},
     year = {2022},
     volume = {18},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a11/}
}
TY  - JOUR
AU  - S. E. Miheev
AU  - V. S. Mikheev
TI  - Quality criteria for control of epidemic process
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2022
SP  - 149
EP  - 162
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a11/
LA  - en
ID  - VSPUI_2022_18_1_a11
ER  - 
%0 Journal Article
%A S. E. Miheev
%A V. S. Mikheev
%T Quality criteria for control of epidemic process
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2022
%P 149-162
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a11/
%G en
%F VSPUI_2022_18_1_a11
S. E. Miheev; V. S. Mikheev. Quality criteria for control of epidemic process. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 1, pp. 149-162. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a11/

[1] Stevens H., “Why outbreaks like coronavirus spread exponentially, and how to “flatten the curve””, The Washington Post, March 14 2020 (accessed: November 15, 2020) https://www.washingtonpost.com/graphics/2020/world/corona-simulator/

[2] Van der Hofstad R., Janssen A. J. E. M., van Leeuwaarden J. S. H., “Critical epidemics, random graphs and Brownian motion with a parabolic drift”, Advances in Applied Probability, Cambridge University Press, Cambridge, 2010, 1187–1206 | MR

[3] Smith D., Moore L., The SIR model for spread of disease — the differential equation model, MAA Publications, Mathematical Association of America Publ, 2004 (accessed: November 15, 2020) https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

[4] Kato F., Tainaka K., Sone S., Morita S., Iida H., Yoshimura J., “Combined effects of prevention and quarantine on a breakout in SIR model”, Scientific Reports, 1:10 (2011), 1–5

[5] Bo H., Yimin Z., Yongbin G., Guohui Z., Juan Z., Jin L., Li L., “The analysis of isolation measures for epidemic control of COVID-19”, Applied Intelligence, 51 (2021), 3074–3085 | DOI

[6] Sokolov S. V., Sokolova A. L., “HIV incidence in Russia: SIR epidemic model-based analysis”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 15:4 (2019), 616–623 | DOI | MR

[7] Zakharov V. V., Balykina Yu. E., “Balance model of the COVID-19 epidemic based on percentage growth”, Informatics and Automation, 20:5 (2021), 1034–1064 (In Russian) | DOI

[8] Sahneh F. D., Scoglio C., “Epidemic spread in human networks”, 2011 50$^{th}$ IEEE Conference on Decision and Control and European Control Conference (Orlando, Florida, USA, 2011), 3008–3013 | MR

[9] Youssef M., Scoglio C., “An individual-based approach to SIR epidemics in contact networks”, J. of Theoretical Biology, 283 (2011), 136–144 | DOI | MR | Zbl

[10] Pereira T., Young L., “Control of epidemics on complex networks: Effectiveness of delayed isolation”, Phys. Rev. E, 92:2 (2015), 022822, 4 pp. | DOI

[11] Alvarez-Zuzek L. G., Stanley H. E., Braunstein L. A., “Epidemic model with isolation in multilayer networks”, Sci. Rep., 5 (2015) | DOI

[12] Albert R., Barabási A., “Statistical mechanics of complex networks”, Rev. Mod. Phys., 74:1 (2002), 47–97 | DOI | MR | Zbl

[13] Holme P., Saramäki J., “Temporal networks”, Physics Reports, 519 (2012), 97–125 | DOI

[14] Mikheev V., IsolationSIRonBarabasi, GitHub repository, GitHub, 2021 (accessed: November 15, 2020) https://github.com/keshmish/IsolationSIRonBarabasi.git

[15] Backer J., Klinkenberg D., Wallinga J., “Incubation period of 2019 novel coronavirus (2019–$n$CoV) infections among travellers from Wuhan, China, January 20–28, 2020”, Euro Surveill, 25:5 (2020), 2000062 | DOI

[16] Woelfel R., Corman V., Guggemos W., Clinical presentation and virological assessment of hospitalized cases of coronavirus disease 2019 in a travel-associated transmission cluster, medRxiv, No 20030502, 2020 | DOI | Zbl

[17] Liu Y., Gayle A. A., Wilder-Smith A., Rocklov J., “The reproductive number of COVID-19 is higher compared to SARS coronavirus”, J. of Travel Medicine, 27:2 (2020) | DOI

[18] Kelly L., Kansas Governor Stay at home order No 20-18, Kansas State Government Publ., Manhattan (accessed: November 15, 2020) https://governor.kansas.gov/wp-content/uploads/2020/04/20-18-Executed.pdf