Solution of a local boundary problem for a non-linear non-stationary system in the class of discrete controls
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 1, pp. 18-36

Voir la notice de l'article provenant de la source Math-Net.Ru

This article proposes an algorithm of construction for the discrete controlling function which is restricted by a norm and provides transition for the wide class of the systems of non-stationary nonlinear ordinary differential equations from the initial state to the setting final state. A constructive sufficient condition that provides this transition is obtained. Efficiency of the method is demonstrated by the solution of the robot-manipulator control problem and its numerical modeling.
Keywords: discrete control, non-linear non-stationary system, stabilization, boundary conditions.
@article{VSPUI_2022_18_1_a1,
     author = {A. N. Kvitko and N. N. Litvinov},
     title = {Solution of a local boundary problem for a non-linear non-stationary system in the class of discrete controls},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {18--36},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a1/}
}
TY  - JOUR
AU  - A. N. Kvitko
AU  - N. N. Litvinov
TI  - Solution of a local boundary problem for a non-linear non-stationary system in the class of discrete controls
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2022
SP  - 18
EP  - 36
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a1/
LA  - ru
ID  - VSPUI_2022_18_1_a1
ER  - 
%0 Journal Article
%A A. N. Kvitko
%A N. N. Litvinov
%T Solution of a local boundary problem for a non-linear non-stationary system in the class of discrete controls
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2022
%P 18-36
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a1/
%G ru
%F VSPUI_2022_18_1_a1
A. N. Kvitko; N. N. Litvinov. Solution of a local boundary problem for a non-linear non-stationary system in the class of discrete controls. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 1, pp. 18-36. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a1/