Solution of a local boundary problem for a non-linear non-stationary system in the class of discrete controls
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 1, pp. 18-36
Voir la notice de l'article provenant de la source Math-Net.Ru
This article proposes an algorithm of construction for the discrete controlling function which is restricted by a norm and provides transition for the wide class of the systems of non-stationary nonlinear ordinary differential equations from the initial state to the setting final state. A constructive sufficient condition that provides this transition is obtained. Efficiency of the method is demonstrated by the solution of the robot-manipulator control problem and its numerical modeling.
Keywords:
discrete control, non-linear non-stationary system, stabilization, boundary conditions.
@article{VSPUI_2022_18_1_a1,
author = {A. N. Kvitko and N. N. Litvinov},
title = {Solution of a local boundary problem for a non-linear non-stationary system in the class of discrete controls},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {18--36},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a1/}
}
TY - JOUR AU - A. N. Kvitko AU - N. N. Litvinov TI - Solution of a local boundary problem for a non-linear non-stationary system in the class of discrete controls JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2022 SP - 18 EP - 36 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a1/ LA - ru ID - VSPUI_2022_18_1_a1 ER -
%0 Journal Article %A A. N. Kvitko %A N. N. Litvinov %T Solution of a local boundary problem for a non-linear non-stationary system in the class of discrete controls %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2022 %P 18-36 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a1/ %G ru %F VSPUI_2022_18_1_a1
A. N. Kvitko; N. N. Litvinov. Solution of a local boundary problem for a non-linear non-stationary system in the class of discrete controls. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 1, pp. 18-36. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a1/