Keywords: Monte-Carlo method, Girsanov transform, homeostasis.
@article{VSPUI_2022_18_1_a0,
author = {G. I. Beliavsky and N. V. Danilova and G. A. Ougolnitsky},
title = {Approximation of supremum and infimum processes as a stochastic approach to the providing of homeostasis},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {5--17},
year = {2022},
volume = {18},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a0/}
}
TY - JOUR AU - G. I. Beliavsky AU - N. V. Danilova AU - G. A. Ougolnitsky TI - Approximation of supremum and infimum processes as a stochastic approach to the providing of homeostasis JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2022 SP - 5 EP - 17 VL - 18 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a0/ LA - ru ID - VSPUI_2022_18_1_a0 ER -
%0 Journal Article %A G. I. Beliavsky %A N. V. Danilova %A G. A. Ougolnitsky %T Approximation of supremum and infimum processes as a stochastic approach to the providing of homeostasis %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2022 %P 5-17 %V 18 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a0/ %G ru %F VSPUI_2022_18_1_a0
G. I. Beliavsky; N. V. Danilova; G. A. Ougolnitsky. Approximation of supremum and infimum processes as a stochastic approach to the providing of homeostasis. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 1, pp. 5-17. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a0/
[1] Fishman G., Monte-Carlo: concepts, algorithms and applications, Springer, New York, 1995, 722 pp. | MR
[2] Kudryavtsev O., “Approximate Wiener — Hopf factorization and Monte-Carlo methods for Levy processes”, Probability Theory and its Applications, 64:2 (2019), 186–208 | DOI | MR | Zbl
[3] Girsanov I., “On the transformation of a class of random processes using a completely continuous measure replacement”, Probability Theory and its Applications, 5 (1960), 314–330 | MR
[4] Novikov A., “On one identity for stochastic integrals”, Probability Theory and its Applications, 1972, no. 4, 761–765 (In Russian) | Zbl
[5] Kloeden P., Platen E., Numerical solution of stochastic differential equations, Springer, New York, 1995, 632 pp. | MR
[6] Carr P., “Randomization and American put”, Rev. Financ. Stud., 1996, no. 11, 597–626
[7] Kuznetsov A., Kyprianou A. E., Pardo J. C., van Schaik K., “A Wiener — Hopf Monte-Carlo simulation technique for Lévy processes”, Ann. Appl. Prob., 2011, no. 21, 2171–2190 | MR | Zbl
[8] Ferreiro-Castilla A., Kyprianou A. E., Scheichl R., Suryanarayana G., “Multilevel Monte-Carlo simulation for Lévy processes based on the Wiener — Hopf factorization”, Stoch. Process. Appl., 2014, no. 124, 985–1010 | DOI | MR | Zbl
[9] Beliavsky G., Danilova N., Ougolnitsky G., “Calculation of probability of the exit of a stochastic process from a band by Monte-Carlo method: A Wiener — Hopf factorization”, Mathematics, 2019, no. 7, 581–597 | DOI
[10] Beliavsky G. I., Danilova N. V., “The combined Monte-Carlo method to calculate the capital of the optimal portfolio in nonlinear models of financial indexes”, Siberian Electronic Mathematical Reports, 2014, no. 11, 1021–1034 | Zbl
[11] Aubin J.-P., Viability theory, Springer-Verlag, New York, USA, 1991, 342 pp. | MR
[12] Ougolnitsky G., Sustainable management, Nova Science Publ. Hauppauge, New York, USA, 2011, 287 pp.
[13] Shiryaev A. N., “On martingale methods in problems of boundary crossing by Brownian motion”, Modern mathematics problems, 2007, no. 8, 3–78 (In Russian)
[14] Casella G., Robert C. P., Wells M. T., Generalized accept-reject sampling chemes, Institute of Mathematical Statistics, 2004, 342–347 | MR | Zbl
[15] Kamachkin A. M., Stepenko N. A., Chitrov G. M., “On the theory of constructive construction of a linear regulator”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 16:3 (2020), 326–344 (In Russian) | DOI | MR