Approximation of supremum and infimum processes as a stochastic approach to the providing of homeostasis
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 1, pp. 5-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the calculation of bounded functional of the trajectories of a stationary diffusion process. Since an analytical solution to this problem does not exist, it is necessary to use numerical methods. One possible direction for obtaining the numerical method is applying the Monte Carlo (MC) method. This involves reproducing the trajectory of a random process with subsequent averaging over the trajectories. To simplify the reproduction of the trajectory, the Girsanov transform is used in this paper. The main goal is to approximate the supremum and infimum processes, which allows us to more accurately compute the mathematical expectation of a function depending on the values of the supremum and infimum processes at the end of the time interval compared to the classical method. The method is based on randomly dividing the interval of the time axis by stopping times passages of the Wiener process, approximating the density to replace the measure, and using the MC method to calculate the expectation. One of the applications of the method is the task of keeping a random process in a given area — the problem of homeostasis.
Mots-clés : diffusion
Keywords: Monte-Carlo method, Girsanov transform, homeostasis.
@article{VSPUI_2022_18_1_a0,
     author = {G. I. Beliavsky and N. V. Danilova and G. A. Ougolnitsky},
     title = {Approximation of supremum and infimum processes as a stochastic approach to the providing of homeostasis},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {5--17},
     year = {2022},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a0/}
}
TY  - JOUR
AU  - G. I. Beliavsky
AU  - N. V. Danilova
AU  - G. A. Ougolnitsky
TI  - Approximation of supremum and infimum processes as a stochastic approach to the providing of homeostasis
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2022
SP  - 5
EP  - 17
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a0/
LA  - ru
ID  - VSPUI_2022_18_1_a0
ER  - 
%0 Journal Article
%A G. I. Beliavsky
%A N. V. Danilova
%A G. A. Ougolnitsky
%T Approximation of supremum and infimum processes as a stochastic approach to the providing of homeostasis
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2022
%P 5-17
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a0/
%G ru
%F VSPUI_2022_18_1_a0
G. I. Beliavsky; N. V. Danilova; G. A. Ougolnitsky. Approximation of supremum and infimum processes as a stochastic approach to the providing of homeostasis. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 1, pp. 5-17. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a0/

[1] Fishman G., Monte-Carlo: concepts, algorithms and applications, Springer, New York, 1995, 722 pp. | MR

[2] Kudryavtsev O., “Approximate Wiener — Hopf factorization and Monte-Carlo methods for Levy processes”, Probability Theory and its Applications, 64:2 (2019), 186–208 | DOI | MR | Zbl

[3] Girsanov I., “On the transformation of a class of random processes using a completely continuous measure replacement”, Probability Theory and its Applications, 5 (1960), 314–330 | MR

[4] Novikov A., “On one identity for stochastic integrals”, Probability Theory and its Applications, 1972, no. 4, 761–765 (In Russian) | Zbl

[5] Kloeden P., Platen E., Numerical solution of stochastic differential equations, Springer, New York, 1995, 632 pp. | MR

[6] Carr P., “Randomization and American put”, Rev. Financ. Stud., 1996, no. 11, 597–626

[7] Kuznetsov A., Kyprianou A. E., Pardo J. C., van Schaik K., “A Wiener — Hopf Monte-Carlo simulation technique for Lévy processes”, Ann. Appl. Prob., 2011, no. 21, 2171–2190 | MR | Zbl

[8] Ferreiro-Castilla A., Kyprianou A. E., Scheichl R., Suryanarayana G., “Multilevel Monte-Carlo simulation for Lévy processes based on the Wiener — Hopf factorization”, Stoch. Process. Appl., 2014, no. 124, 985–1010 | DOI | MR | Zbl

[9] Beliavsky G., Danilova N., Ougolnitsky G., “Calculation of probability of the exit of a stochastic process from a band by Monte-Carlo method: A Wiener — Hopf factorization”, Mathematics, 2019, no. 7, 581–597 | DOI

[10] Beliavsky G. I., Danilova N. V., “The combined Monte-Carlo method to calculate the capital of the optimal portfolio in nonlinear models of financial indexes”, Siberian Electronic Mathematical Reports, 2014, no. 11, 1021–1034 | Zbl

[11] Aubin J.-P., Viability theory, Springer-Verlag, New York, USA, 1991, 342 pp. | MR

[12] Ougolnitsky G., Sustainable management, Nova Science Publ. Hauppauge, New York, USA, 2011, 287 pp.

[13] Shiryaev A. N., “On martingale methods in problems of boundary crossing by Brownian motion”, Modern mathematics problems, 2007, no. 8, 3–78 (In Russian)

[14] Casella G., Robert C. P., Wells M. T., Generalized accept-reject sampling chemes, Institute of Mathematical Statistics, 2004, 342–347 | MR | Zbl

[15] Kamachkin A. M., Stepenko N. A., Chitrov G. M., “On the theory of constructive construction of a linear regulator”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 16:3 (2020), 326–344 (In Russian) | DOI | MR