Mots-clés : random demand, maximin
@article{VSPUI_2021_17_4_a7,
author = {V. M. Bure and V. V. Karelin and L. N. Polyakova},
title = {Exact penalty functions in the problem of choosing the optimal wholesale order in the face of rapid fluctuations in demand},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {397--408},
year = {2021},
volume = {17},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a7/}
}
TY - JOUR AU - V. M. Bure AU - V. V. Karelin AU - L. N. Polyakova TI - Exact penalty functions in the problem of choosing the optimal wholesale order in the face of rapid fluctuations in demand JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2021 SP - 397 EP - 408 VL - 17 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a7/ LA - ru ID - VSPUI_2021_17_4_a7 ER -
%0 Journal Article %A V. M. Bure %A V. V. Karelin %A L. N. Polyakova %T Exact penalty functions in the problem of choosing the optimal wholesale order in the face of rapid fluctuations in demand %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2021 %P 397-408 %V 17 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a7/ %G ru %F VSPUI_2021_17_4_a7
V. M. Bure; V. V. Karelin; L. N. Polyakova. Exact penalty functions in the problem of choosing the optimal wholesale order in the face of rapid fluctuations in demand. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 4, pp. 397-408. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a7/
[1] Polyakova L. N., Bure V. M., Karelin V. V., “Maximin approach in estimating of the goods order volume under condition of falling demand”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:4 (2018), 252–260 (In Russian) | DOI | MR
[2] Aggarwal S. P., Jaggi C. K., “Ordering policies of deteriorating items under permissible delay in payments”, J. Oper. Res. Soc., 46:5 (1995), 658–662 | DOI | Zbl
[3] Bure V. M., Karelin V. V., Bure A. V., “Evaluation of the volume of ordering of goods while possible demand drop”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:3 (2018), 252–260 (In Russian) | DOI | MR
[4] Bure V. M., Karelin V. V., Polyakova L. N., “Probabilistic model of terminal services”, Appl. Math. Sci., 10:39 (2016), 1945–1952 | DOI | MR
[5] Bure V. M., Karelin V. V., Polyakova L. N., Yagolnik I. V., “Modeling of the ordering process for piecewise-linear demand with saturation”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:2 (2017), 138–146 (In Russian) | MR
[6] Bure V. M., Karelin V. V., Myshkov S. K., Polyakova L. N., “Determination of order quantity with piecewise-linear demand function with saturation”, Intern. Journal of Applied Engineering Research, 12:18 (2017), 7857–7862
[7] Chen S. C., Teng J. T., Skouri K., “Economic production quantity models for deteriorating items with up-stream full trade credit and down-stream partial trade credit”, Intern. Journal Prod. Econ., 155 (2013), 302–309 | DOI
[8] Dave U., “Letters and viewpoints on economic order quantity under conditions of permissible delay in payments”, J. Oper. Res. Soc., 46:5 (1985), 1069–1070 | DOI
[9] Giri B. C., Sharma S., “An integrated inventory model for a deteriorating item with allowable shortages and credit linked wholesale price”, Optim. Lett., 37 (2015), 624–637 | DOI | MR
[10] Giri B. C., Sharma S., “Optimal ordering policy for an inventory system with linearly increasing demand and alowable shortages under two levels trade credit financing”, Oper. Res. Intern. Journal, 16 (2016), 25–50 | DOI
[11] Goyal S. K., “Economic order quantity under conditions of permissible delay in payments”, J. Oper. Res. Soc., 36:4 (1985), 335–338 | DOI
[12] Huang Y. F., “Optimal retailer's ordering policies in the EOQ model under trade credit financing”, J. Oper. Res. Soc., 54:9 (2003), 1011–1015 | DOI | Zbl
[13] Huang Y. F., Hsu K. H., “An EOQ model under retailer partial trade credit policy in supply chain”, Intern. Journal Prod. Econ., 112:2 (2008), 655–664 | DOI
[14] Jamal A. M. M., Sarker B. R., Wang S., “An ordering policy for deteriorating items with allowable shortages and permissible delay in payment”, J. Oper. Res. Soc., 48:8 (1997), 826–833 | DOI | Zbl
[15] Khanra S., Ghosh S. K., Chaudhuri K. S., “An EOQ model for a deteriorating item with time dependent quadratic demand under permissible delay in payment”, Appl. Math. Comput., 218:1 (2011), 1–9 | MR | Zbl
[16] Khanra S., Mandal B., Sarkar B., “An inventory model with time dependent demand and shortages under trade credit policy”, Econ. Model., 35 (2013), 349–355 | DOI | MR
[17] Maihami R., Abadi I. N. K., “Joint control of inventory and its pricing for non-instantaneously deteriorating items under permissible delay in payments and partial backlogging”, Math. Comp. Model., 55:5–6 (2012), 1722–1733 | DOI | MR | Zbl
[18] Vasiliev F. P., Optimization methods, v. 1, Moscow Centre of continuous mathematical education Publ, M., 2011, 624 pp. (In Russian)
[19] Polyak B. T., Introduction to optimization, Nauka Publ, M., 1983, 384 pp. (In Russian) | MR
[20] Sukharev A. G., Timokhov A.V., Fedorov V. V., Course of optimization methods, Nauka Publ, M., 1986, 325 pp. | MR
[21] Fedorov V. V., “On the method of penalty functions in the problem of determining maximina”, Computational Mathematics and Mathematical Physics, 1972, no. 2, 321–333 (In Russian) | Zbl
[22] Polyakova L. N., “On the method of exact penalty quasi-differentiable functions”, Computational Mathematics and Mathematical Physics, 41:2 (2001), 225–238 (In Russian) | MR | Zbl