Mathematical modeling of pressure distribution during deformations of the intervertebral disc
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 4, pp. 381-388
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on the analysis of the mechanical models of the intervertebral disc given in the literature, it is concluded that the finite element computational grids used in them do not reflect the real structure of the intervertebral disc. In this regard, a mechanical model of the intervertebral disc was built, the structure of which is close to its real structure. The proposed model was used to determine the dynamics of the pressure distribution in the intervertebral disc when one of the vertebrae is rotated by a given angle. To determine the resulting bulges of each cell in the structure of the fibrous ring, the Rayleigh method and its modification were used. This made it possible to rationally calculate the volumes of cells. When calculating the pressure in each cell, its linear dependence on the deflection value of the cell was used. As a result of the proposed algorithm, the pressure dynamics in each cell of the intervertebral disc model was determined when the angle between the vertebrae changed.
Keywords: mechanical model, intervertebral disc, pressure distribution, mathematical modeling.
@article{VSPUI_2021_17_4_a5,
     author = {D. A. Chubarov and V. P. Tregubov and N. K. Egorova},
     title = {Mathematical modeling of pressure distribution during deformations of the intervertebral disc},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {381--388},
     year = {2021},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a5/}
}
TY  - JOUR
AU  - D. A. Chubarov
AU  - V. P. Tregubov
AU  - N. K. Egorova
TI  - Mathematical modeling of pressure distribution during deformations of the intervertebral disc
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 381
EP  - 388
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a5/
LA  - ru
ID  - VSPUI_2021_17_4_a5
ER  - 
%0 Journal Article
%A D. A. Chubarov
%A V. P. Tregubov
%A N. K. Egorova
%T Mathematical modeling of pressure distribution during deformations of the intervertebral disc
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2021
%P 381-388
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a5/
%G ru
%F VSPUI_2021_17_4_a5
D. A. Chubarov; V. P. Tregubov; N. K. Egorova. Mathematical modeling of pressure distribution during deformations of the intervertebral disc. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 4, pp. 381-388. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a5/

[1] Castro A. P. G., Wilson W., Huyghe J. M., Ito K., Alves J. L., “Intervertebral disc creep behavior assessment through an open source finite element solver”, Journal of Biomechanics, 47 (2013), 297–301 | DOI

[2] Gao X., Zhu Q., Gu W., “Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading”, Journal of Biomechanics, 49 (2016), 2655–2661 | DOI

[3] Guo L.-X., Li R., Zhang M., “Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method”, Acta of Bioengineering and Biomechanics, 18:2 (2016), 19–29

[4] Jacobs N. T., Cortes D. H., Peloquin J. M., Vresilovic E. J., Elliott D. M., “Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent”, Journal of Biomechanics, 47 (2014), 2540–2546 | DOI

[5] Schmidt H., Bashkuev M., Galbusera F., Wilke H.-J., Shirazi-Adl A., “Finite element study of human lumbar disc nucleus replacements”, Computer Methods in Biomechanics and Biomedical Engineering, 17:16 (2014), 1762–1776 | DOI

[6] Zanjani-Pour S., Winlove C. P., Smith C. W., Meakin J. R., “Image driven subject-specific finite element models of spinal biomechanics”, Journal of Biomechanics, 49 (2016), 919–925 | DOI

[7] Gohari E., Nikkhoo M., Haghpanahi M., Parnianpour M., “Analysis of different material theories used in a FE model of a lumbar segment motion”, Acta of Bioengineering and Biomechanics, 15:2 (2013), 33–41

[8] Schmidt H., Heuer F., Simon U., Kettler A., Rohlmann A., Claes L., Wilke H.-J., “Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus”, Clinical Biomechanics, 21 (2006), 337–344 | DOI

[9] Meroi E. A., Natali A. N., Pavan P. G., Skarpa K., “Numerical analysis of the mechanical behavior of the intervertebral disc taking into account the structure”, Russian Journal of Biomechanics, 9:1(33) (2005), 36–51 (In Russian)

[10] Zharnov A. M., Zharnova O. A., “Biomechanical processes in the intervertebral disc of the cervical spine during its movement”, Russian Journal of Biomechanics, 17:1(59) (2013), 32–40 (In Russian)

[11] Horoshev D. V., Il'yalov O. R., Ustyuzhancev N. E., Nyashin Yu. I., “Biomechanical modeling of the intervertebral disc of the human lumbar spine — current state of the problem”, Russian Journal of Biomechanics, 23:3 (2019), 411–422 (In Russian)