@article{VSPUI_2021_17_4_a5,
author = {D. A. Chubarov and V. P. Tregubov and N. K. Egorova},
title = {Mathematical modeling of pressure distribution during deformations of the intervertebral disc},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {381--388},
year = {2021},
volume = {17},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a5/}
}
TY - JOUR AU - D. A. Chubarov AU - V. P. Tregubov AU - N. K. Egorova TI - Mathematical modeling of pressure distribution during deformations of the intervertebral disc JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2021 SP - 381 EP - 388 VL - 17 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a5/ LA - ru ID - VSPUI_2021_17_4_a5 ER -
%0 Journal Article %A D. A. Chubarov %A V. P. Tregubov %A N. K. Egorova %T Mathematical modeling of pressure distribution during deformations of the intervertebral disc %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2021 %P 381-388 %V 17 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a5/ %G ru %F VSPUI_2021_17_4_a5
D. A. Chubarov; V. P. Tregubov; N. K. Egorova. Mathematical modeling of pressure distribution during deformations of the intervertebral disc. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 4, pp. 381-388. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a5/
[1] Castro A. P. G., Wilson W., Huyghe J. M., Ito K., Alves J. L., “Intervertebral disc creep behavior assessment through an open source finite element solver”, Journal of Biomechanics, 47 (2013), 297–301 | DOI
[2] Gao X., Zhu Q., Gu W., “Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading”, Journal of Biomechanics, 49 (2016), 2655–2661 | DOI
[3] Guo L.-X., Li R., Zhang M., “Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method”, Acta of Bioengineering and Biomechanics, 18:2 (2016), 19–29
[4] Jacobs N. T., Cortes D. H., Peloquin J. M., Vresilovic E. J., Elliott D. M., “Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent”, Journal of Biomechanics, 47 (2014), 2540–2546 | DOI
[5] Schmidt H., Bashkuev M., Galbusera F., Wilke H.-J., Shirazi-Adl A., “Finite element study of human lumbar disc nucleus replacements”, Computer Methods in Biomechanics and Biomedical Engineering, 17:16 (2014), 1762–1776 | DOI
[6] Zanjani-Pour S., Winlove C. P., Smith C. W., Meakin J. R., “Image driven subject-specific finite element models of spinal biomechanics”, Journal of Biomechanics, 49 (2016), 919–925 | DOI
[7] Gohari E., Nikkhoo M., Haghpanahi M., Parnianpour M., “Analysis of different material theories used in a FE model of a lumbar segment motion”, Acta of Bioengineering and Biomechanics, 15:2 (2013), 33–41
[8] Schmidt H., Heuer F., Simon U., Kettler A., Rohlmann A., Claes L., Wilke H.-J., “Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus”, Clinical Biomechanics, 21 (2006), 337–344 | DOI
[9] Meroi E. A., Natali A. N., Pavan P. G., Skarpa K., “Numerical analysis of the mechanical behavior of the intervertebral disc taking into account the structure”, Russian Journal of Biomechanics, 9:1(33) (2005), 36–51 (In Russian)
[10] Zharnov A. M., Zharnova O. A., “Biomechanical processes in the intervertebral disc of the cervical spine during its movement”, Russian Journal of Biomechanics, 17:1(59) (2013), 32–40 (In Russian)
[11] Horoshev D. V., Il'yalov O. R., Ustyuzhancev N. E., Nyashin Yu. I., “Biomechanical modeling of the intervertebral disc of the human lumbar spine — current state of the problem”, Russian Journal of Biomechanics, 23:3 (2019), 411–422 (In Russian)