Keywords: differential equations of turbulent flow, flat plate, boundary layer, Reynolds number, boundary layer thickness, displacement thickness, momentum loss thickness.
@article{VSPUI_2021_17_4_a4,
author = {V. A. Pavlovsky and S. A. Kabrits},
title = {Calculation of the turbulent boundary layer of a flat plate},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {370--380},
year = {2021},
volume = {17},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a4/}
}
TY - JOUR AU - V. A. Pavlovsky AU - S. A. Kabrits TI - Calculation of the turbulent boundary layer of a flat plate JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2021 SP - 370 EP - 380 VL - 17 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a4/ LA - ru ID - VSPUI_2021_17_4_a4 ER -
%0 Journal Article %A V. A. Pavlovsky %A S. A. Kabrits %T Calculation of the turbulent boundary layer of a flat plate %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2021 %P 370-380 %V 17 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a4/ %G ru %F VSPUI_2021_17_4_a4
V. A. Pavlovsky; S. A. Kabrits. Calculation of the turbulent boundary layer of a flat plate. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 4, pp. 370-380. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a4/
[1] Pavlovsky V. A., “Power-law generalization of Newton's formula for the shear stress in a fluid in the form of a tensor rheological relation and the resulting options for constructing flow models”, Thesis of papers IX Poliachovsky readings, Materials of Intern. Sci. Conference on Mechanics (March 9–12, 2021, Saint Petersburg, Russia), BBM Press, St. Petersburg, 2021, 226–227 (In Russian)
[2] Schlichting H., Boundary layer theory, Verlag G. Braun Publ., Berlin, 1965, 736 pp. | MR
[3] Lojczyanskij L. G., Fluid and gas mechanics, Drofa Publ, M., 2003, 840 pp. (In Russian)
[4] Pavlovsky V. A., Chistov A. L., Kuchinsky D. M., “Modeling of pipe flows”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:1 (2019), 93–106 (In Russian) | DOI | MR
[5] Pavlovsky V. A., Nikushhenko D. V., Computational fluid dynamics. Theoretical fundamentals, Lan' Publ, St. Petersburg, 2018, 368 pp. (In Russian)
[6] Fediyaevsky K. K., Voitkunsky Ya. I., Faddeev Yu. I., Hydromechanics, Sudostroenie Publ, L., 1968, 568 pp. (In Russian)
[7] Kabrits S. A., Kolpak E. P., “Numerical study of convergence of nonlinear models of the theory of shells with thickness decrease”, AIP Conference Proceedings, 1648 (2015), 300005 | DOI
[8] Novozhilov V. V., Pavlovskij V. A., Establishment of turbulence through an incompressible fluid, 2${^{\rm nd}}$ ed., St. Petersburg University Press, St. Petersburg, 2012, 484 pp.