Algorithm of construction of effective explicit methods for structurally partitioned systems of ordinary differential equations
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 4, pp. 353-369 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Systems of ordinary differential equations partitioned on base of their right-hand side dependencies on the unknown functions are considered. Explicit multischeme Runge — Kutta methods for such systems are presented. These methods require fewer right-hand side computations (stages) than classic single-scheme Runge — Kutta methods to provide the same order of convergence. The full system of order conditions is presented. This system is reduced to several independent linear systems with help of the simplifying relations. The algorithm of computing the order conditions system solution with six free parameters is given. A particular choice of free parameters and the corresponding computational scheme are presented. The advantage of the presented methods is shown by the numerical comparison to the known classic six order method by J. C. Butcher.
Keywords: partitioned methods, structural partitioning, order conditions, multischeme methods, sixth order method.
Mots-clés : explicit Runge — Kutta
@article{VSPUI_2021_17_4_a3,
     author = {I. V. Olemskoy and A. S. Eremin},
     title = {Algorithm of construction of effective explicit methods for structurally partitioned systems of ordinary differential equations},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {353--369},
     year = {2021},
     volume = {17},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a3/}
}
TY  - JOUR
AU  - I. V. Olemskoy
AU  - A. S. Eremin
TI  - Algorithm of construction of effective explicit methods for structurally partitioned systems of ordinary differential equations
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 353
EP  - 369
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a3/
LA  - en
ID  - VSPUI_2021_17_4_a3
ER  - 
%0 Journal Article
%A I. V. Olemskoy
%A A. S. Eremin
%T Algorithm of construction of effective explicit methods for structurally partitioned systems of ordinary differential equations
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2021
%P 353-369
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a3/
%G en
%F VSPUI_2021_17_4_a3
I. V. Olemskoy; A. S. Eremin. Algorithm of construction of effective explicit methods for structurally partitioned systems of ordinary differential equations. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 4, pp. 353-369. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a3/

[1] Hairer E., Nørsett S. P., Wanner G., Solving ordinary differential equations, v. I, Nonstiff problems, $2^{\rm nd}$ ed., $3^{\rm rd}$ corr. print, Springer-Verlag Publ, Heidelberg–Berlin, 2008, 528 pp. | MR

[2] Butcher J. C., Numerical methods for ordinary differential equations, $3^{\rm rd}$ ed., John Wiley Sons Publ, Chichester, UK, 2016, 513 pp. | MR | Zbl

[3] Hairer E., Wanner G., Solving ordinary differential equations, v. II, Stiff and differential-algebraic problems, $2^{\rm nd}$ ed., $2^{\rm rd}$ corr. print, Springer-Verlag Publ, Heidelberg–Berlin, 2002, 614 pp. | MR

[4] Hofer E., “A partially implicit method for large stiff systems of ODEs with only few equations introducing small time-constants”, SIAM Journal Numerical Analytics, 13:5 (1976), 645–663 | DOI | MR | Zbl

[5] Kalogiratou Z., Monovasilis T., Simos T. E., “Symplectic partitioned Runge — Kutta methods for the numerical integration of periodic and oscillatory problems”, Recent Advances in Computational and Applied Mathematics, Springer Netherlands Publ, Dordrecht, 2011, 169–208 | DOI | MR | Zbl

[6] Monovasilis T., “Symplectic partitioned Runge — Kutta methods with the phase-lag property”, Applied Mathematics Comput., 218:18 (2012), 9075–9084 | MR | Zbl

[7] McLachlan R., Ryland B., Sun Y., “High order multisymplectic Runge — Kutta methods”, SIAM Journal Sciences Comput., 36:5 (2014), A2199–A2226 | DOI | MR | Zbl

[8] Shome S. S., Haug E. J., Jay L. O., “Dual-rate integration using partitioned Runge — Kutta methods for mechanical systems with interacting subsystems”, Mechanics Based Design of Structures and Machines, 32:3 (2004), 253–282 | DOI | MR

[9] Sandu A., Günther M., “Multirate generalized additive Runge — Kutta methods”, Numerische Mathematik, 133:3 (2016), 497–524 | DOI | MR | Zbl

[10] Sandu A., “A class of multirate infinitesimal GARK methods”, SIAM Journal Numerical Analytics, 57:5 (2019), 2300–2327 | DOI | MR | Zbl

[11] Koto T., “IMEX Runge — Kutta schemes for reaction — diffusion equations”, J. Comput. Appl. Math., 215:1 (2008), 182–195 | DOI | MR | Zbl

[12] Ketcheson D. I., MacDonald C., Ruuth S. J., “Spatially partitioned embedded Runge — Kutta methods”, SIAM Journal Numerical Analytics, 51:5 (2013), 2887–2910 | DOI | MR | Zbl

[13] Olemskoy I. V., “Fifth-order four-stage method for numerical integration of special systems”, Computational Mathematics and Mathematical Physics, 42:8 (2002), 1135–1145 | MR

[14] Olemskoy I. V., Eremin A. S., Ivanov A. P., “Sixth order method with six stages for integrating special systems of ordinary differential equations”, Proceedings of 2015 Intern. Conference “Stability and Control Processes” in memory of V. I. Zubov, SCP, St. Petersburg University Press, St. Petersburg, 2015, 110–113

[15] Eremin A. S., Kovrizhnykh N. A., Olemskoy I. V., “An explicit one-step multischeme sixth order method for systems of special structure”, Applied Mathematics Computational, 347 (2019), 853–864 | MR | Zbl

[16] Olemskoy I. V., “A fifth-order five-stage embedded method of the Dormand — Prince type”, Computational Mathematics and Mathematical Physics, 45:7 (2005), 1140–1150 | MR

[17] Olemskoy I. V., Integration of structurally partitioned systems of ordinary differential equations, St. Petersburg University Press, St. Petersburg, 2009, 179 pp. (In Russian)

[18] Olemskoy I. V., Eremin A. S., “An embedded method for integrating systems of structurally separated ordinary differential equations”, Computational Mathematics and Mathematical Physics, 50:3 (2010), 414–427 | DOI | MR

[19] Eremin A. S., Kovrizhnykh N. A., Olemskoy I. V., “Economical sixth order Runge — Kutta method for systems of ordinary differential equations”, Computational Science and its Applications, ICCSA 2019, LNCS, 11619, Springer Publ., Cham, 2019, 89–102

[20] Butcher J. C., “On Runge — Kutta processes of high order”, Journal Australian Mathematics Soc., 4:2 (1964), 179–194 | DOI | MR | Zbl

[21] Olemskoy I. V., Kovrizhnykh N. A., “A family of sixth-order methods with six stages”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:3 (2018), 215–229 | DOI | MR

[22] Olemskoy I. V., Eremin A. S., “An embedded fourth order method for solving structurally partitioned systems of ordinary differential equations”, Applied Mathematical Sciences, 9:97–100 (2015), 4843–4852 | DOI