Digital control of output variables in a given range considering delay
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 4, pp. 449-463 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the control of a dynamic object with the retention of controlled variables in the required range, taking into account the high dimension of input and output, time delay, constraints and external disturbances. The formalized statement of the problem of digital control synthesis is considered. An approach based on the use of predictive models is proposed. Its key feature is the introduction of a specialized quality functional that reflects the specifics of the problem, the error functional. This functional plays the role of a penalty for the output of controlled variables that go beyond the specified range. It is shown that the implementation of the control law is reduced to solving the problem of quadratic programming at each instant of discrete time. The results obtained are illustrated by an example of controlling the oil refining process in a distillation column.
Keywords: digital control, predictive model, control in a range, optimization, constraints.
@article{VSPUI_2021_17_4_a11,
     author = {M. V. Sotnikova and R. A. Sevostyanov},
     title = {Digital control of output variables in a given range considering delay},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {449--463},
     year = {2021},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a11/}
}
TY  - JOUR
AU  - M. V. Sotnikova
AU  - R. A. Sevostyanov
TI  - Digital control of output variables in a given range considering delay
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 449
EP  - 463
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a11/
LA  - ru
ID  - VSPUI_2021_17_4_a11
ER  - 
%0 Journal Article
%A M. V. Sotnikova
%A R. A. Sevostyanov
%T Digital control of output variables in a given range considering delay
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2021
%P 449-463
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a11/
%G ru
%F VSPUI_2021_17_4_a11
M. V. Sotnikova; R. A. Sevostyanov. Digital control of output variables in a given range considering delay. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 4, pp. 449-463. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a11/

[1] Burdick D. L., Leffler W. L., Petrochemicals in nontechnical language, PennWell Publ. Company, Oklahoma, USA, 1990, 347 pp.

[2] Corriou J. P., “Distillation column sontrol”, Process Control, Springer Intern. Publ., Cham, 2018, 793–819 | DOI

[3] Kouvaritakis B., Cannon M., Model predictive control: Classical, robust and stochastic, Springer Intern. Publ., Cham, 2016, 384 pp. | MR | Zbl

[4] S. V. Raković, W. S. Levine, Handbook of Model Predictive Control, Birkhäuser Publ, Basel, 2019, 692 pp. | MR | Zbl

[5] Veremey E. I., Sotnikova M. V., Model predictive control, Tutorial, Nauchnaya kniga Publ., Voronezh, 2016, 214 pp. (In Russian)

[6] Lahiri S. K., Multivariable predictive control: Applications in industry, John Wiley Sons, Hoboken, New York, USA, 2017, 304 pp.

[7] Donzellini G., Oneto L., Ponta D., Anguita D., Introduction to digital systems design, Springer Intern. Publ, Cham, 2019, 536 pp. | MR | Zbl

[8] Sotnikova M., “Plasma stabilization based on model predictive control”, Intern. Journal of Modern Physics A, 24:5 (2009), 999–1008 | DOI

[9] Aleksandrov A. Yu., Zhabko A. P., Stability of motions of discrete dynamic systems, Research institute of chemistry of St. Petersburg University Publ, St. Petersburg, 2003, 112 pp. (In Russian)

[10] Landau I. D., Zito G., Digital control systems: design, identification and implementation, Springer-Verlag, London, 2006, 484 pp.

[11] Sotnikova M. V., “Digital control design based on predictive models to keep the controlled variables in a given range”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:3 (2019), 397–409 (In Russian) | DOI | MR

[12] Veremey E. I., Linear feedback systems, Tutorial, Lan Publ, St. Petersburg, 2013, 448 pp. (In Russian)